Overcome advanced challenges in building end-to-end ML solutions by leveraging the capabilities of Amazon SageMaker for developing and integrating ML models into production
Key Features:
Book Description:
Amazon SageMaker is a fully managed AWS service that provides the ability to build, train, deploy, and monitor machine learning models. The book begins with a high-level overview of Amazon SageMaker capabilities that map to the various phases of the machine learning process to help set the right foundation. You'll learn efficient tactics to address data science challenges such as processing data at scale, data preparation, connecting to big data pipelines, identifying data bias, running A/B tests, and model explainability using Amazon SageMaker. As you advance, you'll understand how you can tackle the challenge of training at scale, including how to use large data sets while saving costs, monitoring training resources to identify bottlenecks, speeding up long training jobs, and tracking multiple models trained for a common goal. Moving ahead, you'll find out how you can integrate Amazon SageMaker with other AWS to build reliable, cost-optimized, and automated machine learning applications. In addition to this, you'll build ML pipelines integrated with MLOps principles and apply best practices to build secure and performant solutions.
By the end of the book, you'll confidently be able to apply Amazon SageMaker's wide range of capabilities to the full spectrum of machine learning workflows.
What You Will Learn:
Who this book is for:
This book is for expert data scientists responsible for building machine learning applications using Amazon SageMaker. Working knowledge of Amazon SageMaker, machine learning, deep learning, and experience using Jupyter Notebooks and Python is expected. Basic knowledge of AWS related to data, security, and monitoring will help you make the most of the book.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Sireesha Muppala, PhD is a Principal Enterprise Solutions Architect, AI/ML at Amazon Web Services (AWS). Sireesha holds a PhD in computer science and post-doctorate from the University of Colorado. She is a prolific content creator in the ML space with multiple journal articles, blogs, and public speaking engagements. Sireesha is a co-creator and instructor of the Practical Data Science specialization on Coursera. She is a co-director of Women In Big Data (WiBD), Denver chapter. Sireesha enjoys helping organizations design, architect, and implement ML solutions at scale.
Randy DeFauw is a Principal Solution Architect at AWS. He holds an MSEE from the University of Michigan, where his graduate thesis focused on computer vision for autonomous vehicles. He also holds an MBA from Colorado State University. Randy has held a variety of positions in the technology space, ranging from software engineering to product management. He entered the big data space in 2013 and continues to explore that area. He is actively working on projects in the ML space, including reinforcement learning. He has presented at numerous conferences, including GlueCon and Strata, published several blogs and white papers, and contributed many open source projects to GitHub.
Shelbee Eigenbrode is a Principal AI and ML Specialist Solutions Architect at AWS. She holds six AWS certifications and has been in technology for 23 years, spanning multiple industries, technologies, and roles. She is currently focusing on combining her DevOps and ML background to deliver and manage ML workloads at scale. With over 35 patents granted across various technology domains, she has a passion for continuous innovation and using data to drive business outcomes. Shelbee co-founded the Denver chapter of Women in Big Data.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 21,36 expédition depuis Etats-Unis vers France
Destinations, frais et délaisEUR 4,61 expédition depuis Royaume-Uni vers France
Destinations, frais et délaisVendeur : Bookmans, Tucson, AZ, Etats-Unis
paperback. Etat : Good. Satisfaction 100% guaranteed. N° de réf. du vendeur mon0002697514
Quantité disponible : 1 disponible(s)
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9781801070522_new
Quantité disponible : Plus de 20 disponibles
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9781801070522
Quantité disponible : Plus de 20 disponibles
Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni
PAP. Etat : New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L0-9781801070522
Quantité disponible : Plus de 20 disponibles
Vendeur : PBShop.store US, Wood Dale, IL, Etats-Unis
PAP. Etat : New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L0-9781801070522
Quantité disponible : Plus de 20 disponibles
Vendeur : Chiron Media, Wallingford, Royaume-Uni
PF. Etat : New. N° de réf. du vendeur 6666-IUK-9781801070522
Quantité disponible : 10 disponible(s)
Vendeur : BargainBookStores, Grand Rapids, MI, Etats-Unis
Etat : New. Amazon SageMaker Best Practices: Proven tips and tricks to build successful machine learning solutions on Amazon SageMaker (Paperback or Softback) 1.32. N° de réf. du vendeur BBS-9781801070522
Quantité disponible : 5 disponible(s)
Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni
Paperback / softback. Etat : New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 100. N° de réf. du vendeur C9781801070522
Quantité disponible : Plus de 20 disponibles
Vendeur : Best Price, Torrance, CA, Etats-Unis
Etat : New. SUPER FAST SHIPPING. N° de réf. du vendeur 9781801070522
Quantité disponible : 2 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. Going beyond the basics, Amazon SageMaker Best Practices provides end-to-end coverage of the service capabilities that the platform offers for building and automating machine learning workloads to address data science challenges. With this book, you ll disc. N° de réf. du vendeur 532754881
Quantité disponible : Plus de 20 disponibles