This book of the bestselling and widely acclaimed Python Machine Learning series is a comprehensive guide to machine and deep learning using PyTorch's simple to code framework.
Purchase of the print or Kindle book includes a free eBook in PDF format.
Machine Learning with PyTorch and Scikit-Learn is a comprehensive guide to machine learning and deep learning with PyTorch. It acts as both a step-by-step tutorial and a reference you'll keep coming back to as you build your machine learning systems.
Packed with clear explanations, visualizations, and examples, the book covers all the essential machine learning techniques in depth. While some books teach you only to follow instructions, with this machine learning book, we teach the principles allowing you to build models and applications for yourself.
Why PyTorch?
PyTorch is the Pythonic way to learn machine learning, making it easier to learn and simpler to code with. This book explains the essential parts of PyTorch and how to create models using popular libraries, such as PyTorch Lightning and PyTorch Geometric.
You will also learn about generative adversarial networks (GANs) for generating new data and training intelligent agents with reinforcement learning. Finally, this new edition is expanded to cover the latest trends in deep learning, including graph neural networks and large-scale transformers used for natural language processing (NLP).
This PyTorch book is your companion to machine learning with Python, whether you're a Python developer new to machine learning or want to deepen your knowledge of the latest developments.
If you have a good grasp of Python basics and want to start learning about machine learning and deep learning, then this is the book for you. This is an essential resource written for developers and data scientists who want to create practical machine learning and deep learning applications using scikit-learn and PyTorch.
Before you get started with this book, you’ll need a good understanding of calculus, as well as linear algebra.
(N.B. Please use the Look Inside option to see further chapters)
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Sebastian Raschka is an Assistant Professor of Statistics at the University of Wisconsin-Madison focusing on machine learning and deep learning research. As Lead AI Educator at Grid AI, Sebastian plans to continue following his passion for helping people get into machine learning and artificial intelligence.
Yuxi (Hayden) Liu is a Software Engineer, Machine Learning at Google. He is developing and improving machine learning models and systems for ads optimization on the largest search engine in the world.
Vahid Mirjalili is a deep learning researcher focusing on CV applications. Vahid received a Ph.D. degree in both Mechanical Engineering and Computer Science from Michigan State University.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 9,32 expédition depuis Etats-Unis vers France
Destinations, frais et délaisEUR 6,79 expédition depuis Etats-Unis vers France
Destinations, frais et délaisVendeur : BooksRun, Philadelphia, PA, Etats-Unis
Paperback. Etat : Good. Ship within 24hrs. Satisfaction 100% guaranteed. APO/FPO addresses supported. N° de réf. du vendeur 1801819319-11-1
Quantité disponible : 1 disponible(s)
Vendeur : BooksRun, Philadelphia, PA, Etats-Unis
Paperback. Etat : Very Good. Ship within 24hrs. Satisfaction 100% guaranteed. APO/FPO addresses supported. N° de réf. du vendeur 1801819319-8-1
Quantité disponible : 1 disponible(s)
Vendeur : BooksRun, Philadelphia, PA, Etats-Unis
Paperback. Etat : As New. Ship within 24hrs. Satisfaction 100% guaranteed. APO/FPO addresses supported. N° de réf. du vendeur 1801819319-10-1
Quantité disponible : 1 disponible(s)
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9781801819312
Quantité disponible : Plus de 20 disponibles
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9781801819312_new
Quantité disponible : Plus de 20 disponibles
Vendeur : BargainBookStores, Grand Rapids, MI, Etats-Unis
Paperback or Softback. Etat : New. Machine Learning with PyTorch and Scikit-Learn: Develop machine learning and deep learning models with Python 2.86. Book. N° de réf. du vendeur BBS-9781801819312
Quantité disponible : 5 disponible(s)
Vendeur : SecondSale, Montgomery, IL, Etats-Unis
Etat : Good. Item in good condition. Textbooks may not include supplemental items i.e. CDs, access codes etc. N° de réf. du vendeur 00089438951
Quantité disponible : 2 disponible(s)
Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni
PAP. Etat : New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L0-9781801819312
Quantité disponible : Plus de 20 disponibles
Vendeur : Chiron Media, Wallingford, Royaume-Uni
PF. Etat : New. N° de réf. du vendeur 6666-IUK-9781801819312
Quantité disponible : 10 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 44189195-n
Quantité disponible : 1 disponible(s)