Train, test, run, track, store, tune, deploy, and explain provenance-aware deep learning models and pipelines at scale with reproducibility using MLflow
The book starts with an overview of the deep learning (DL) life cycle and the emerging Machine Learning Ops (MLOps) field, providing a clear picture of the four pillars of deep learning: data, model, code, and explainability and the role of MLflow in these areas.
From there onward, it guides you step by step in understanding the concept of MLflow experiments and usage patterns, using MLflow as a unified framework to track DL data, code and pipelines, models, parameters, and metrics at scale. You'll also tackle running DL pipelines in a distributed execution environment with reproducibility and provenance tracking, and tuning DL models through hyperparameter optimization (HPO) with Ray Tune, Optuna, and HyperBand. As you progress, you'll learn how to build a multi-step DL inference pipeline with preprocessing and postprocessing steps, deploy a DL inference pipeline for production using Ray Serve and AWS SageMaker, and finally create a DL explanation as a service (EaaS) using the popular Shapley Additive Explanations (SHAP) toolbox.
By the end of this book, you'll have built the foundation and gained the hands-on experience you need to develop a DL pipeline solution from initial offline experimentation to final deployment and production, all within a reproducible and open source framework.
This book is for machine learning practitioners including data scientists, data engineers, ML engineers, and scientists who want to build scalable full life cycle deep learning pipelines with reproducibility and provenance tracking using MLflow. A basic understanding of data science and machine learning is necessary to grasp the concepts presented in this book.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Yong Liu has been working in big data science, machine learning, and optimization since his doctoral student years at the University of Illinois at Urbana-Champaign (UIUC) and later as a senior research scientist and principal investigator at the National Center for Supercomputing Applications (NCSA), where he led data science R&D projects funded by the National Science Foundation and Microsoft Research. He then joined Microsoft and AI/ML start-ups in the industry. He has shipped ML and DL models to production and has been a speaker at the Spark/Data+AI summit and NLP summit. He has recently published peer-reviewed papers on deep learning, linked data, and knowledge-infused learning at various ACM/IEEE conferences and journals.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 17,07 expédition depuis Etats-Unis vers France
Destinations, frais et délaisEUR 4,60 expédition depuis Royaume-Uni vers France
Destinations, frais et délaisVendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9781803241333_new
Quantité disponible : Plus de 20 disponibles
Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni
PAP. Etat : New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L0-9781803241333
Quantité disponible : Plus de 20 disponibles
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9781803241333
Quantité disponible : Plus de 20 disponibles
Vendeur : PBShop.store US, Wood Dale, IL, Etats-Unis
PAP. Etat : New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L0-9781803241333
Quantité disponible : Plus de 20 disponibles
Vendeur : BargainBookStores, Grand Rapids, MI, Etats-Unis
Paperback or Softback. Etat : New. Practical Deep Learning at Scale with MLflow: Bridge the gap between offline experimentation and online production 1.1. Book. N° de réf. du vendeur BBS-9781803241333
Quantité disponible : 5 disponible(s)
Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni
Paperback / softback. Etat : New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 100. N° de réf. du vendeur C9781803241333
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 44566175-n
Quantité disponible : Plus de 20 disponibles
Vendeur : moluna, Greven, Allemagne
Etat : New. Über den AutorrnrnYong Liu has been working in big data science, machine learning, and optimization since his doctoral student years at the University of Illinois at Urbana-Champaign (UIUC) and later as a senior research scientist and princ. N° de réf. du vendeur 663126390
Quantité disponible : Plus de 20 disponibles
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. Print on Demand pp. 242. N° de réf. du vendeur 402458442
Quantité disponible : 4 disponible(s)
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : New. N° de réf. du vendeur 44566175-n
Quantité disponible : Plus de 20 disponibles