Articles liés à Applied Machine Learning Explainability Techniques:...

Applied Machine Learning Explainability Techniques: Make ML models explainable and trustworthy for practical applications using LIME, SHAP, and more - Couverture souple

 
9781803246154: Applied Machine Learning Explainability Techniques: Make ML models explainable and trustworthy for practical applications using LIME, SHAP, and more

Synopsis

Leverage top XAI frameworks to explain your machine learning models with ease and discover best practices and guidelines to build scalable explainable ML systems

Key Features

  • Explore various explainability methods for designing robust and scalable explainable ML systems
  • Use XAI frameworks such as LIME and SHAP to make ML models explainable to solve practical problems
  • Design user-centric explainable ML systems using guidelines provided for industrial applications

Book Description

Explainable AI (XAI) is an emerging field that brings artificial intelligence (AI) closer to non-technical end users. XAI makes machine learning (ML) models transparent and trustworthy along with promoting AI adoption for industrial and research use cases.

Applied Machine Learning Explainability Techniques comes with a unique blend of industrial and academic research perspectives to help you acquire practical XAI skills. You'll begin by gaining a conceptual understanding of XAI and why it's so important in AI. Next, you'll get the practical experience needed to utilize XAI in AI/ML problem-solving processes using state-of-the-art methods and frameworks. Finally, you'll get the essential guidelines needed to take your XAI journey to the next level and bridge the existing gaps between AI and end users.

By the end of this ML book, you'll be equipped with best practices in the AI/ML life cycle and will be able to implement XAI methods and approaches using Python to solve industrial problems, successfully addressing key pain points encountered.

What you will learn

  • Explore various explanation methods and their evaluation criteria
  • Learn model explanation methods for structured and unstructured data
  • Apply data-centric XAI for practical problem-solving
  • Hands-on exposure to LIME, SHAP, TCAV, DALEX, ALIBI, DiCE, and others
  • Discover industrial best practices for explainable ML systems
  • Use user-centric XAI to bring AI closer to non-technical end users
  • Address open challenges in XAI using the recommended guidelines

Who this book is for

This book is for scientists, researchers, engineers, architects, and managers who are actively engaged in machine learning and related fields. Anyone who is interested in problem-solving using AI will benefit from this book. Foundational knowledge of Python, ML, DL, and data science is recommended. AI/ML experts working with data science, ML, DL, and AI will be able to put their knowledge to work with this practical guide. This book is ideal for you if you're a data and AI scientist, AI/ML engineer, AI/ML product manager, AI product owner, AI/ML researcher, and UX and HCI researcher.

Table of Contents

  1. Foundational Concepts of Explainability Techniques
  2. Model Explainability Methods
  3. Data-Centric Approaches
  4. LIME for Model Interpretability
  5. Practical Exposure to Using LIME in ML
  6. Model Interpretability Using SHAP
  7. Practical Exposure to Using SHAP in ML
  8. Human-Friendly Explanations with TCAV
  9. Other Popular XAI Frameworks
  10. XAI Industry Best Practices
  11. End User-Centered Artificial Intelligence

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

À propos de l?auteur

Aditya Bhattacharya is an Explainable AI Researcher at KU Leuven with the mission to bring AI closer to end-users.

Previously, I had worked as the AI Lead and a data scientist at West Pharmaceuticals. I have an overall exposure of 6 years in Data Science, Machine Learning, IoT, and Software Development. I have led more than 20 AI projects and programs democratizing AI practice for West and Microsoft. In West, I have contributed to forming the AI team and developed end-to-end solutions from scratch. I also have people management experience of about 2 years at West and have led and managed a global team of 10+ members.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Acheter D'occasion

état :  Comme neuf
Unread book in perfect condition...
Afficher cet article
EUR 45,98

Autre devise

EUR 16,98 expédition depuis Etats-Unis vers France

Destinations, frais et délais

Acheter neuf

Afficher cet article
EUR 46,78

Autre devise

EUR 4,60 expédition depuis Royaume-Uni vers France

Destinations, frais et délais

Résultats de recherche pour Applied Machine Learning Explainability Techniques:...

Image d'archives

Bhattacharya, Aditya
Edité par Packt Publishing, 2022
ISBN 10 : 1803246154 ISBN 13 : 9781803246154
Neuf Couverture souple

Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. In. N° de réf. du vendeur ria9781803246154_new

Contacter le vendeur

Acheter neuf

EUR 46,78
Autre devise
Frais de port : EUR 4,60
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Aditya Bhattacharya
Edité par Packt Publishing Limited, 2022
ISBN 10 : 1803246154 ISBN 13 : 9781803246154
Neuf PAP
impression à la demande

Vendeur : PBShop.store US, Wood Dale, IL, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

PAP. Etat : New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L0-9781803246154

Contacter le vendeur

Acheter neuf

EUR 51,13
Autre devise
Frais de port : EUR 1,05
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Bhattacharya, Aditya
Edité par Packt Publishing, 2022
ISBN 10 : 1803246154 ISBN 13 : 9781803246154
Neuf Couverture souple

Vendeur : California Books, Miami, FL, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur I-9781803246154

Contacter le vendeur

Acheter neuf

EUR 45,49
Autre devise
Frais de port : EUR 6,79
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Aditya Bhattacharya
Edité par Packt Publishing Limited, 2022
ISBN 10 : 1803246154 ISBN 13 : 9781803246154
Neuf PAP
impression à la demande

Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

PAP. Etat : New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L0-9781803246154

Contacter le vendeur

Acheter neuf

EUR 47,47
Autre devise
Frais de port : EUR 4,91
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Bhattacharya, Aditya
Edité par Packt Publishing 2022-07, 2022
ISBN 10 : 1803246154 ISBN 13 : 9781803246154
Neuf PF

Vendeur : Chiron Media, Wallingford, Royaume-Uni

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

PF. Etat : New. N° de réf. du vendeur 6666-IUK-9781803246154

Contacter le vendeur

Acheter neuf

EUR 41,71
Autre devise
Frais de port : EUR 10,95
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 10 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Bhattacharya, Aditya
Edité par Packt Publishing 7/29/2022, 2022
ISBN 10 : 1803246154 ISBN 13 : 9781803246154
Neuf Paperback or Softback

Vendeur : BargainBookStores, Grand Rapids, MI, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback or Softback. Etat : New. Applied Machine Learning Explainability Techniques: Make ML models explainable and trustworthy for practical applications using LIME, SHAP, and more 1.16. Book. N° de réf. du vendeur BBS-9781803246154

Contacter le vendeur

Acheter neuf

EUR 45,08
Autre devise
Frais de port : EUR 10,62
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 5 disponible(s)

Ajouter au panier

Image d'archives

Aditya Bhattacharya
Edité par Packt Publishing Limited, 2022
ISBN 10 : 1803246154 ISBN 13 : 9781803246154
Neuf Paperback / softback
impression à la demande

Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback / softback. Etat : New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 100. N° de réf. du vendeur C9781803246154

Contacter le vendeur

Acheter neuf

EUR 51,61
Autre devise
Frais de port : EUR 4,15
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Aditya Bhattacharya
Edité par Packt Publishing Limited, GB, 2022
ISBN 10 : 1803246154 ISBN 13 : 9781803246154
Neuf Paperback

Vendeur : Rarewaves.com UK, London, Royaume-Uni

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : New. Leverage top XAI frameworks to explain your machine learning models with ease and discover best practices and guidelines to build scalable explainable ML systemsKey FeaturesExplore various explainability methods for designing robust and scalable explainable ML systemsUse XAI frameworks such as LIME and SHAP to make ML models explainable to solve practical problemsDesign user-centric explainable ML systems using guidelines provided for industrial applicationsBook DescriptionExplainable AI (XAI) is an emerging field that brings artificial intelligence (AI) closer to non-technical end users. XAI makes machine learning (ML) models transparent and trustworthy along with promoting AI adoption for industrial and research use cases.Applied Machine Learning Explainability Techniques comes with a unique blend of industrial and academic research perspectives to help you acquire practical XAI skills. You'll begin by gaining a conceptual understanding of XAI and why it's so important in AI. Next, you'll get the practical experience needed to utilize XAI in AI/ML problem-solving processes using state-of-the-art methods and frameworks. Finally, you'll get the essential guidelines needed to take your XAI journey to the next level and bridge the existing gaps between AI and end users.By the end of this ML book, you'll be equipped with best practices in the AI/ML life cycle and will be able to implement XAI methods and approaches using Python to solve industrial problems, successfully addressing key pain points encountered.What you will learnExplore various explanation methods and their evaluation criteriaLearn model explanation methods for structured and unstructured dataApply data-centric XAI for practical problem-solvingHands-on exposure to LIME, SHAP, TCAV, DALEX, ALIBI, DiCE, and othersDiscover industrial best practices for explainable ML systemsUse user-centric XAI to bring AI closer to non-technical end usersAddress open challenges in XAI using the recommended guidelinesWho this book is forThis book is for scientists, researchers, engineers, architects, and managers who are actively engaged in machine learning and related fields. Anyone who is interested in problem-solving using AI will benefit from this book. Foundational knowledge of Python, ML, DL, and data science is recommended. AI/ML experts working with data science, ML, DL, and AI will be able to put their knowledge to work with this practical guide. This book is ideal for you if you're a data and AI scientist, AI/ML engineer, AI/ML product manager, AI product owner, AI/ML researcher, and UX and HCI researcher. N° de réf. du vendeur LU-9781803246154

Contacter le vendeur

Acheter neuf

EUR 55,04
Autre devise
Frais de port : EUR 2,31
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Bhattacharya, Aditya
Edité par Packt Publishing, 2022
ISBN 10 : 1803246154 ISBN 13 : 9781803246154
Neuf Couverture souple

Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 44586327-n

Contacter le vendeur

Acheter neuf

EUR 41,30
Autre devise
Frais de port : EUR 16,98
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Aditya Bhattacharya
Edité par Packt Publishing Limited, GB, 2022
ISBN 10 : 1803246154 ISBN 13 : 9781803246154
Neuf Paperback

Vendeur : Rarewaves.com USA, London, LONDO, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : New. Leverage top XAI frameworks to explain your machine learning models with ease and discover best practices and guidelines to build scalable explainable ML systemsKey FeaturesExplore various explainability methods for designing robust and scalable explainable ML systemsUse XAI frameworks such as LIME and SHAP to make ML models explainable to solve practical problemsDesign user-centric explainable ML systems using guidelines provided for industrial applicationsBook DescriptionExplainable AI (XAI) is an emerging field that brings artificial intelligence (AI) closer to non-technical end users. XAI makes machine learning (ML) models transparent and trustworthy along with promoting AI adoption for industrial and research use cases.Applied Machine Learning Explainability Techniques comes with a unique blend of industrial and academic research perspectives to help you acquire practical XAI skills. You'll begin by gaining a conceptual understanding of XAI and why it's so important in AI. Next, you'll get the practical experience needed to utilize XAI in AI/ML problem-solving processes using state-of-the-art methods and frameworks. Finally, you'll get the essential guidelines needed to take your XAI journey to the next level and bridge the existing gaps between AI and end users.By the end of this ML book, you'll be equipped with best practices in the AI/ML life cycle and will be able to implement XAI methods and approaches using Python to solve industrial problems, successfully addressing key pain points encountered.What you will learnExplore various explanation methods and their evaluation criteriaLearn model explanation methods for structured and unstructured dataApply data-centric XAI for practical problem-solvingHands-on exposure to LIME, SHAP, TCAV, DALEX, ALIBI, DiCE, and othersDiscover industrial best practices for explainable ML systemsUse user-centric XAI to bring AI closer to non-technical end usersAddress open challenges in XAI using the recommended guidelinesWho this book is forThis book is for scientists, researchers, engineers, architects, and managers who are actively engaged in machine learning and related fields. Anyone who is interested in problem-solving using AI will benefit from this book. Foundational knowledge of Python, ML, DL, and data science is recommended. AI/ML experts working with data science, ML, DL, and AI will be able to put their knowledge to work with this practical guide. This book is ideal for you if you're a data and AI scientist, AI/ML engineer, AI/ML product manager, AI product owner, AI/ML researcher, and UX and HCI researcher. N° de réf. du vendeur LU-9781803246154

Contacter le vendeur

Acheter neuf

EUR 59,36
Autre devise
Frais de port : EUR 2,31
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

There are 9 autres exemplaires de ce livre sont disponibles

Afficher tous les résultats pour ce livre