Articles liés à Causal Inference and Discovery in Python: Unlock the...

Causal Inference and Discovery in Python: Unlock the secrets of modern causal machine learning with DoWhy, EconML, PyTorch and more - Couverture souple

 
9781804612989: Causal Inference and Discovery in Python: Unlock the secrets of modern causal machine learning with DoWhy, EconML, PyTorch and more

Synopsis

Demystify causal inference and casual discovery by uncovering causal principles and merging them with powerful machine learning algorithms for observational and experimental data

Purchase of the print or Kindle book includes a free PDF eBook

Key Features

  • Examine Pearlian causal concepts such as structural causal models, interventions, counterfactuals, and more
  • Discover modern causal inference techniques for average and heterogenous treatment effect estimation
  • Explore and leverage traditional and modern causal discovery methods

Book Description

Causal methods present unique challenges compared to traditional machine learning and statistics. Learning causality can be challenging, but it offers distinct advantages that elude a purely statistical mindset. Causal Inference and Discovery in Python helps you unlock the potential of causality.

You’ll start with basic motivations behind causal thinking and a comprehensive introduction to Pearlian causal concepts, such as structural causal models, interventions, counterfactuals, and more. Each concept is accompanied by a theoretical explanation and a set of practical exercises with Python code.

Next, you’ll dive into the world of causal effect estimation, consistently progressing towards modern machine learning methods. Step-by-step, you’ll discover Python causal ecosystem and harness the power of cutting-edge algorithms. You’ll further explore the mechanics of how “causes leave traces” and compare the main families of causal discovery algorithms.

The final chapter gives you a broad outlook into the future of causal AI where we examine challenges and opportunities and provide you with a comprehensive list of resources to learn more.

What you will learn

  • Master the fundamental concepts of causal inference
  • Decipher the mysteries of structural causal models
  • Unleash the power of the 4-step causal inference process in Python
  • Explore advanced uplift modeling techniques
  • Unlock the secrets of modern causal discovery using Python
  • Use causal inference for social impact and community benefit

Who this book is for

This book is for machine learning engineers, data scientists, and machine learning researchers looking to extend their data science toolkit and explore causal machine learning. It will also help developers familiar with causality who have worked in another technology and want to switch to Python, and data scientists with a history of working with traditional causality who want to learn causal machine learning. It’s also a must-read for tech-savvy entrepreneurs looking to build a competitive edge for their products and go beyond the limitations of traditional machine learning.

Table of Contents

  1. Causality – Hey, We Have Machine Learning, So Why Even Bother?
  2. Judea Pearl and the Ladder of Causation
  3. Regression, Observations, and Interventions
  4. Graphical Models
  5. Forks, Chains, and Immoralities
  6. Nodes, Edges, and Statistical (In)dependence
  7. The Four-Step Process of Causal Inference
  8. Causal Models – Assumptions and Challenges
  9. Causal Inference and Machine Learning – from Matching to Meta-Learners
  10. Causal Inference and Machine Learning – Advanced Estimators, Experiments, Evaluations, and More
  11. Causal Inference and Machine Learning – Deep Learning, NLP, and Beyond
  12. Can I Have a Causal Graph, Please?
  13. Causal Discovery and Machine Learning – from Assumptions to Applications
  14. Causal Discovery and Machine Learning – Advanced Deep Learning and Beyond
  15. Epilogue

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

À propos de l?auteur

Aleksander Molak is an independent machine learning researcher and consultant. Aleksander gained experience working with Fortune 100, Fortune 500, and Inc. 5000 companies across Europe, the USA, and Israel, helping them to build and design large-scale machine learning systems. On a mission to democratize causality for businesses and machine learning practitioners, Aleksander is a prolific writer, creator, and international speaker. As a co-founder of Lespire.io, an innovative provider of AI and machine learning training for corporate teams, Aleksander is committed to empowering businesses to harness the full potential of cutting-edge technologies that allow them to stay ahead of the curve.

This book has been co-authored by many people whose ideas, love, and support left a significant trace in my life. I am deeply grateful to each one of you.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

  • ÉditeurPackt Publishing
  • Date d'édition2023
  • ISBN 10 1804612987
  • ISBN 13 9781804612989
  • ReliureBroché
  • Langueanglais
  • Nombre de pages456

Acheter D'occasion

état :  Comme neuf
Unread book in perfect condition...
Afficher cet article
EUR 50,98

Autre devise

EUR 17,64 expédition depuis Etats-Unis vers France

Destinations, frais et délais

Acheter neuf

Afficher cet article
EUR 54,54

Autre devise

EUR 7,06 expédition depuis Etats-Unis vers France

Destinations, frais et délais

Autres éditions populaires du même titre

9782561651594: Causal Inference and Discovery in Python: Unlock the secrets of modern causal machine learning with DoWhy, EconML, PyTorch and more

Edition présentée

ISBN 10 :  2561651592 ISBN 13 :  9782561651594
Editeur : Bloomburg, 2023
Couverture souple

Résultats de recherche pour Causal Inference and Discovery in Python: Unlock the...

Image d'archives

Aleksander Molak
Edité par Packt Publishing, 2023
ISBN 10 : 1804612987 ISBN 13 : 9781804612989
Neuf Couverture souple

Vendeur : California Books, Miami, FL, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur I-9781804612989

Contacter le vendeur

Acheter neuf

EUR 54,54
Autre devise
Frais de port : EUR 7,06
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Aleksander Molak
Edité par Packt Publishing, 2023
ISBN 10 : 1804612987 ISBN 13 : 9781804612989
Neuf Couverture souple

Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. In. N° de réf. du vendeur ria9781804612989_new

Contacter le vendeur

Acheter neuf

EUR 56,91
Autre devise
Frais de port : EUR 4,73
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Aleksander Molak
Edité par Packt Publishing, 2023
ISBN 10 : 1804612987 ISBN 13 : 9781804612989
Neuf PAP
impression à la demande

Vendeur : PBShop.store US, Wood Dale, IL, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

PAP. Etat : New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L0-9781804612989

Contacter le vendeur

Acheter neuf

EUR 63,25
Autre devise
Frais de port : EUR 0,17
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Aleksander Molak
Edité par Packt Publishing, 2023
ISBN 10 : 1804612987 ISBN 13 : 9781804612989
Neuf PAP
impression à la demande

Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

PAP. Etat : New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L0-9781804612989

Contacter le vendeur

Acheter neuf

EUR 57,87
Autre devise
Frais de port : EUR 6,12
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Molak, Aleksander
Edité par Packt Publishing, 2023
ISBN 10 : 1804612987 ISBN 13 : 9781804612989
Ancien ou d'occasion Couverture souple

Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 46088148

Contacter le vendeur

Acheter D'occasion

EUR 50,98
Autre devise
Frais de port : EUR 17,64
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Aleksander Molak
Edité par Packt Publishing, 2023
ISBN 10 : 1804612987 ISBN 13 : 9781804612989
Neuf Taschenbuch
impression à la demande

Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Demystify causal inference and casual discovery by uncovering causal principles and merging them with powerful machine learning algorithms for observational and experimental dataPurchase of the print or Kindle book includes a free PDF Elektronisches BuchKey Features Examine Pearlian causal concepts such as structural causal models, interventions, counterfactuals, and more Discover modern causal inference techniques for average and heterogenous treatment effect estimation Explore and leverage traditional and modern causal discovery methodsBook DescriptionCausal methods present unique challenges compared to traditional machine learning and statistics. Learning causality can be challenging, but it offers distinct advantages that elude a purely statistical mindset. Causal Inference and Discovery in Python helps you unlock the potential of causality.You'll start with basic motivations behind causal thinking and a comprehensive introduction to Pearlian causal concepts, such as structural causal models, interventions, counterfactuals, and more. Each concept is accompanied by a theoretical explanation and a set of practical exercises with Python code. Next, you'll dive into the world of causal effect estimation, consistently progressing towards modern machine learning methods. Step-by-step, you'll discover Python causal ecosystem and harness the power of cutting-edge algorithms. You'll further explore the mechanics of how 'causes leave traces' and compare the main families of causal discovery algorithms. The final chapter gives you a broad outlook into the future of causal AI where we examine challenges and opportunities and provide you with a comprehensive list of resources to learn more.By the end of this book, you will be able to build your own models for causal inference and discovery using statistical and machine learning techniques as well as perform basic project assessment.What you will learn Master the fundamental concepts of causal inference Decipher the mysteries of structural causal models Unleash the power of the 4-step causal inference process in Python Explore advanced uplift modeling techniques Unlock the secrets of modern causal discovery using Python Use causal inference for social impact and community benefitWho this book is forThis book is for machine learning engineers, researchers, and data scientists looking to extend their toolkit and explore causal machine learning. It will also help people who've worked with causality using other programming languages and now want to switch to Python, those who worked with traditional causal inference and want to learn about causal machine learning, and tech-savvy entrepreneurs who want to go beyond the limitations of traditional ML. You are expected to have basic knowledge of Python and Python scientific libraries along with knowledge of basic probability and statistics.Table of Contents Causality - Hey, We Have Machine Learning, So Why Even Bother Judea Pearl and the Ladder of Causation Regression, Observations, and Interventions Graphical Models Forks, Chains, and Immoralities Nodes, Edges, and Statistical (In)dependence The Four-Step Process of Causal Inference Causal Models - Assumptions and Challenges Causal Inference and Machine Learning - from Matching to Meta- Learners Causal Inference and Machine Learning - Advanced Estimators, Experiments, Evaluations, and More Causal Inference and Machine Learning - Deep Learning, NLP, and Beyond Can I Have a Causal Graph, Please (N.B. Please use the Read Sample option to see further chapters). N° de réf. du vendeur 9781804612989

Contacter le vendeur

Acheter neuf

EUR 58,27
Autre devise
Frais de port : EUR 10,99
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Molak, Aleksander
Edité par Packt Publishing, 2023
ISBN 10 : 1804612987 ISBN 13 : 9781804612989
Neuf Couverture souple

Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 46088148-n

Contacter le vendeur

Acheter neuf

EUR 52,13
Autre devise
Frais de port : EUR 17,64
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Molak, Aleksander
Edité par Packt Publishing, 2023
ISBN 10 : 1804612987 ISBN 13 : 9781804612989
Neuf Couverture souple

Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 46088148-n

Contacter le vendeur

Acheter neuf

EUR 56,90
Autre devise
Frais de port : EUR 17,76
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Molak, Aleksander
Edité par Packt Publishing 5/31/2023, 2023
ISBN 10 : 1804612987 ISBN 13 : 9781804612989
Neuf Paperback or Softback

Vendeur : BargainBookStores, Grand Rapids, MI, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback or Softback. Etat : New. Causal Inference and Discovery in Python: Unlock the secrets of modern causal machine learning with DoWhy, EconML, PyTorch and more. Book. N° de réf. du vendeur BBS-9781804612989

Contacter le vendeur

Acheter neuf

EUR 64,50
Autre devise
Frais de port : EUR 11,03
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 5 disponible(s)

Ajouter au panier

Image d'archives

Aleksander Molak
Edité par Packt Publishing Limited, 2023
ISBN 10 : 1804612987 ISBN 13 : 9781804612989
Neuf Paperback / softback
impression à la demande

Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback / softback. Etat : New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 526. N° de réf. du vendeur C9781804612989

Contacter le vendeur

Acheter neuf

EUR 69,49
Autre devise
Frais de port : EUR 7,29
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

There are 4 autres exemplaires de ce livre sont disponibles

Afficher tous les résultats pour ce livre