Demystify causal inference and casual discovery by uncovering causal principles and merging them with powerful machine learning algorithms for observational and experimental data
Purchase of the print or Kindle book includes a free PDF eBook
Causal methods present unique challenges compared to traditional machine learning and statistics. Learning causality can be challenging, but it offers distinct advantages that elude a purely statistical mindset. Causal Inference and Discovery in Python helps you unlock the potential of causality.
You’ll start with basic motivations behind causal thinking and a comprehensive introduction to Pearlian causal concepts, such as structural causal models, interventions, counterfactuals, and more. Each concept is accompanied by a theoretical explanation and a set of practical exercises with Python code.
Next, you’ll dive into the world of causal effect estimation, consistently progressing towards modern machine learning methods. Step-by-step, you’ll discover Python causal ecosystem and harness the power of cutting-edge algorithms. You’ll further explore the mechanics of how “causes leave traces” and compare the main families of causal discovery algorithms.
The final chapter gives you a broad outlook into the future of causal AI where we examine challenges and opportunities and provide you with a comprehensive list of resources to learn more.
This book is for machine learning engineers, data scientists, and machine learning researchers looking to extend their data science toolkit and explore causal machine learning. It will also help developers familiar with causality who have worked in another technology and want to switch to Python, and data scientists with a history of working with traditional causality who want to learn causal machine learning. It’s also a must-read for tech-savvy entrepreneurs looking to build a competitive edge for their products and go beyond the limitations of traditional machine learning.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Aleksander Molak is an independent machine learning researcher and consultant. Aleksander gained experience working with Fortune 100, Fortune 500, and Inc. 5000 companies across Europe, the USA, and Israel, helping them to build and design large-scale machine learning systems. On a mission to democratize causality for businesses and machine learning practitioners, Aleksander is a prolific writer, creator, and international speaker. As a co-founder of Lespire.io, an innovative provider of AI and machine learning training for corporate teams, Aleksander is committed to empowering businesses to harness the full potential of cutting-edge technologies that allow them to stay ahead of the curve.
This book has been co-authored by many people whose ideas, love, and support left a significant trace in my life. I am deeply grateful to each one of you.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 17,64 expédition depuis Etats-Unis vers France
Destinations, frais et délaisEUR 7,06 expédition depuis Etats-Unis vers France
Destinations, frais et délaisVendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9781804612989
Quantité disponible : Plus de 20 disponibles
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9781804612989_new
Quantité disponible : Plus de 20 disponibles
Vendeur : PBShop.store US, Wood Dale, IL, Etats-Unis
PAP. Etat : New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L0-9781804612989
Quantité disponible : Plus de 20 disponibles
Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni
PAP. Etat : New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L0-9781804612989
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 46088148
Quantité disponible : Plus de 20 disponibles
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Demystify causal inference and casual discovery by uncovering causal principles and merging them with powerful machine learning algorithms for observational and experimental dataPurchase of the print or Kindle book includes a free PDF Elektronisches BuchKey Features Examine Pearlian causal concepts such as structural causal models, interventions, counterfactuals, and more Discover modern causal inference techniques for average and heterogenous treatment effect estimation Explore and leverage traditional and modern causal discovery methodsBook DescriptionCausal methods present unique challenges compared to traditional machine learning and statistics. Learning causality can be challenging, but it offers distinct advantages that elude a purely statistical mindset. Causal Inference and Discovery in Python helps you unlock the potential of causality.You'll start with basic motivations behind causal thinking and a comprehensive introduction to Pearlian causal concepts, such as structural causal models, interventions, counterfactuals, and more. Each concept is accompanied by a theoretical explanation and a set of practical exercises with Python code. Next, you'll dive into the world of causal effect estimation, consistently progressing towards modern machine learning methods. Step-by-step, you'll discover Python causal ecosystem and harness the power of cutting-edge algorithms. You'll further explore the mechanics of how 'causes leave traces' and compare the main families of causal discovery algorithms. The final chapter gives you a broad outlook into the future of causal AI where we examine challenges and opportunities and provide you with a comprehensive list of resources to learn more.By the end of this book, you will be able to build your own models for causal inference and discovery using statistical and machine learning techniques as well as perform basic project assessment.What you will learn Master the fundamental concepts of causal inference Decipher the mysteries of structural causal models Unleash the power of the 4-step causal inference process in Python Explore advanced uplift modeling techniques Unlock the secrets of modern causal discovery using Python Use causal inference for social impact and community benefitWho this book is forThis book is for machine learning engineers, researchers, and data scientists looking to extend their toolkit and explore causal machine learning. It will also help people who've worked with causality using other programming languages and now want to switch to Python, those who worked with traditional causal inference and want to learn about causal machine learning, and tech-savvy entrepreneurs who want to go beyond the limitations of traditional ML. You are expected to have basic knowledge of Python and Python scientific libraries along with knowledge of basic probability and statistics.Table of Contents Causality - Hey, We Have Machine Learning, So Why Even Bother Judea Pearl and the Ladder of Causation Regression, Observations, and Interventions Graphical Models Forks, Chains, and Immoralities Nodes, Edges, and Statistical (In)dependence The Four-Step Process of Causal Inference Causal Models - Assumptions and Challenges Causal Inference and Machine Learning - from Matching to Meta- Learners Causal Inference and Machine Learning - Advanced Estimators, Experiments, Evaluations, and More Causal Inference and Machine Learning - Deep Learning, NLP, and Beyond Can I Have a Causal Graph, Please (N.B. Please use the Read Sample option to see further chapters). N° de réf. du vendeur 9781804612989
Quantité disponible : 1 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 46088148-n
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : New. N° de réf. du vendeur 46088148-n
Quantité disponible : Plus de 20 disponibles
Vendeur : BargainBookStores, Grand Rapids, MI, Etats-Unis
Paperback or Softback. Etat : New. Causal Inference and Discovery in Python: Unlock the secrets of modern causal machine learning with DoWhy, EconML, PyTorch and more. Book. N° de réf. du vendeur BBS-9781804612989
Quantité disponible : 5 disponible(s)
Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni
Paperback / softback. Etat : New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 526. N° de réf. du vendeur C9781804612989
Quantité disponible : Plus de 20 disponibles