Articles liés à LLM Design Patterns: A Practical Guide to Building...

LLM Design Patterns: A Practical Guide to Building Robust and Efficient AI Systems - Couverture souple

 
9781836207030: LLM Design Patterns: A Practical Guide to Building Robust and Efficient AI Systems

Synopsis

Explore reusable design patterns, including data-centric approaches, model development, model fine-tuning, and RAG for LLM application development and advanced prompting techniques

Key Features

  • Learn comprehensive LLM development, including data prep, training pipelines, and optimization
  • Explore advanced prompting techniques, such as chain-of-thought, tree-of-thought, RAG, and AI agents
  • Implement evaluation metrics, interpretability, and bias detection for fair, reliable models
  • Print or Kindle purchase includes a free PDF eBook

Book Description

This practical guide for AI professionals enables you to build on the power of design patterns to develop robust, scalable, and efficient large language models (LLMs). Written by a global AI expert and popular author driving standards and innovation in Generative AI, security, and strategy, this book covers the end-to-end lifecycle of LLM development and introduces reusable architectural and engineering solutions to common challenges in data handling, model training, evaluation, and deployment.

You’ll learn to clean, augment, and annotate large-scale datasets, architect modular training pipelines, and optimize models using hyperparameter tuning, pruning, and quantization. The chapters help you explore regularization, checkpointing, fine-tuning, and advanced prompting methods, such as reason-and-act, as well as implement reflection, multi-step reasoning, and tool use for intelligent task completion. The book also highlights Retrieval-Augmented Generation (RAG), graph-based retrieval, interpretability, fairness, and RLHF, culminating in the creation of agentic LLM systems.

By the end of this book, you’ll be equipped with the knowledge and tools to build next-generation LLMs that are adaptable, efficient, safe, and aligned with human values.

What you will learn

  • Implement efficient data prep techniques, including cleaning and augmentation
  • Design scalable training pipelines with tuning, regularization, and checkpointing
  • Optimize LLMs via pruning, quantization, and fine-tuning
  • Evaluate models with metrics, cross-validation, and interpretability
  • Understand fairness and detect bias in outputs
  • Develop RLHF strategies to build secure, agentic AI systems

Who this book is for

This book is essential for AI engineers, architects, data scientists, and software engineers responsible for developing and deploying AI systems powered by large language models. A basic understanding of machine learning concepts and experience in Python programming is a must.

Table of Contents

  1. Introduction to LLM Design Patterns
  2. Data Cleaning for LLM Training
  3. Data Augmentation
  4. Handling Large Datasets for LLM Training
  5. Data Versioning
  6. Dataset Annotation and Labeling
  7. Training Pipeline
  8. Hyperparameter Tuning
  9. Regularization
  10. Checkpointing and Recovery
  11. Fine-Tuning
  12. Model Pruning
  13. Quantization
  14. Evaluation Metrics
  15. Cross-Validation
  16. Interpretability
  17. Fairness and Bias Detection
  18. Adversarial Robustness
  19. Reinforcement Learning from Human Feedback
  20. Chain-of-Thought Prompting
  21. Tree-of-Thoughts Prompting
  22. Reasoning and Acting
  23. Reasoning WithOut Observation
  24. Reflection Techniques
  25. Automatic Multi-Step Reasoning and Tool Use
  26. Retrieval-Augmented Generation
  27. Graph-Based RAG
  28. Advanced RAG
  29. Evaluating RAG Systems
  30. Agentic Patterns

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

À propos de l?auteur

Ken Huang is a renowned AI expert, serving as co-chair of AI Safety Working Groups at Cloud Security Alliance and the AI STR Working Group at World Digital Technology Academy under the UN Framework. As CEO of DistributedApps, he provides specialized GenAI consulting.A key contributor to OWASP's Top 10 Risks for LLM Applications and NIST's Generative AI Working Group, Huang has authored influential books including Beyond AI (Springer, 2023), Generative AI Security (Springer, 2024), and Agentic AI: Theories and Practice (Springer, 2025) He's a global speaker at prestigious events such as Davos WEF, ACM, IEEE, and RSAC. Huang is also a member of the OpenAI Forum and project leader for the OWASP AI Vulnerability Scoring System project.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

  • ÉditeurPackt Publishing
  • Date d'édition2025
  • ISBN 10 1836207034
  • ISBN 13 9781836207030
  • ReliureBroché
  • Langueanglais
  • Nombre de pages534
  • Coordonnées du fabricantnon disponible

Acheter neuf

Afficher cet article
EUR 90,53

Autre devise

EUR 7,79 expédition depuis Etats-Unis vers France

Destinations, frais et délais

Résultats de recherche pour LLM Design Patterns: A Practical Guide to Building...

Image d'archives

Huang, Ken
Edité par Packt Publishing, 2025
ISBN 10 : 1836207034 ISBN 13 : 9781836207030
Neuf Couverture souple

Vendeur : Books Puddle, New York, NY, Etats-Unis

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 26404381268

Contacter le vendeur

Acheter neuf

EUR 90,53
Autre devise
Frais de port : EUR 7,79
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 4 disponible(s)

Ajouter au panier

Image d'archives

Huang, Ken
Edité par Packt Publishing, 2025
ISBN 10 : 1836207034 ISBN 13 : 9781836207030
Neuf Couverture souple
impression à la demande

Vendeur : Majestic Books, Hounslow, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Print on Demand. N° de réf. du vendeur 409854347

Contacter le vendeur

Acheter neuf

EUR 91,43
Autre devise
Frais de port : EUR 10,39
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 4 disponible(s)

Ajouter au panier

Image d'archives

Huang, Ken
Edité par Packt Publishing, 2025
ISBN 10 : 1836207034 ISBN 13 : 9781836207030
Neuf Couverture souple
impression à la demande

Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. PRINT ON DEMAND. N° de réf. du vendeur 18404381278

Contacter le vendeur

Acheter neuf

EUR 95,98
Autre devise
Frais de port : EUR 7,95
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 4 disponible(s)

Ajouter au panier