Explore reusable design patterns, including data-centric approaches, model development, model fine-tuning, and RAG for LLM application development and advanced prompting techniques
Free with your book: PDF Copy, AI Assistant, and Next-Gen Reader
This practical guide for AI professionals enables you to build on the power of design patterns to develop robust, scalable, and efficient large language models (LLMs). Written by a global AI expert and popular author driving standards and innovation in Generative AI, security, and strategy, this book covers the end-to-end lifecycle of LLM development and introduces reusable architectural and engineering solutions to common challenges in data handling, model training, evaluation, and deployment.
You’ll learn to clean, augment, and annotate large-scale datasets, architect modular training pipelines, and optimize models using hyperparameter tuning, pruning, and quantization. The chapters help you explore regularization, checkpointing, fine-tuning, and advanced prompting methods, such as reason-and-act, as well as implement reflection, multi-step reasoning, and tool use for intelligent task completion. The book also highlights Retrieval-Augmented Generation (RAG), graph-based retrieval, interpretability, fairness, and RLHF, culminating in the creation of agentic LLM systems.
By the end of this book, you’ll be equipped with the knowledge and tools to build next-generation LLMs that are adaptable, efficient, safe, and aligned with human values.
This book is essential for AI engineers, architects, data scientists, and software engineers responsible for developing and deploying AI systems powered by large language models. A basic understanding of machine learning concepts and experience in Python programming is a must.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Ken Huang is a renowned AI expert, serving as co-chair of AI Safety Working Groups at Cloud Security Alliance and the AI STR Working Group at World Digital Technology Academy under the UN Framework. As CEO of DistributedApps, he provides specialized GenAI consulting.A key contributor to OWASP's Top 10 Risks for LLM Applications and NIST's Generative AI Working Group, Huang has authored influential books including Beyond AI (Springer, 2023), Generative AI Security (Springer, 2024), and Agentic AI: Theories and Practice (Springer, 2025) He's a global speaker at prestigious events such as Davos WEF, ACM, IEEE, and RSAC. Huang is also a member of the OpenAI Forum and project leader for the OWASP AI Vulnerability Scoring System project.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Vendeur : HPB-Red, Dallas, TX, Etats-Unis
paperback. Etat : Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! N° de réf. du vendeur S_452457183
Quantité disponible : 1 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 50363607-n
Quantité disponible : Plus de 20 disponibles
Vendeur : Grand Eagle Retail, Bensenville, IL, Etats-Unis
Paperback. Etat : new. Paperback. Explore reusable design patterns, including data-centric approaches, model development, model fine-tuning, and RAG for LLM application development and advanced prompting techniquesFree with your book: PDF Copy, AI Assistant, and Next-Gen ReaderKey FeaturesLearn comprehensive LLM development, including data prep, training pipelines, and optimizationExplore advanced prompting techniques, such as chain-of-thought, tree-of-thought, RAG, and AI agentsImplement evaluation metrics, interpretability, and bias detection for fair, reliable modelsBook DescriptionThis practical guide for AI professionals enables you to build on the power of design patterns to develop robust, scalable, and efficient large language models (LLMs). Written by a global AI expert and popular author driving standards and innovation in Generative AI, security, and strategy, this book covers the end-to-end lifecycle of LLM development and introduces reusable architectural and engineering solutions to common challenges in data handling, model training, evaluation, and deployment.Youll learn to clean, augment, and annotate large-scale datasets, architect modular training pipelines, and optimize models using hyperparameter tuning, pruning, and quantization. The chapters help you explore regularization, checkpointing, fine-tuning, and advanced prompting methods, such as reason-and-act, as well as implement reflection, multi-step reasoning, and tool use for intelligent task completion. The book also highlights Retrieval-Augmented Generation (RAG), graph-based retrieval, interpretability, fairness, and RLHF, culminating in the creation of agentic LLM systems.By the end of this book, youll be equipped with the knowledge and tools to build next-generation LLMs that are adaptable, efficient, safe, and aligned with human values.What you will learnImplement efficient data prep techniques, including cleaning and augmentationDesign scalable training pipelines with tuning, regularization, and checkpointingOptimize LLMs via pruning, quantization, and fine-tuningEvaluate models with metrics, cross-validation, and interpretabilityUnderstand fairness and detect bias in outputsDevelop RLHF strategies to build secure, agentic AI systemsWho this book is forThis book is essential for AI engineers, architects, data scientists, and software engineers responsible for developing and deploying AI systems powered by large language models. A basic understanding of machine learning concepts and experience in Python programming is a must. This book helps you gain practical skills to develop and deploy LLMs. This item is printed on demand. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9781836207030
Quantité disponible : 1 disponible(s)
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9781836207030
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 50363607
Quantité disponible : Plus de 20 disponibles
Vendeur : PBShop.store US, Wood Dale, IL, Etats-Unis
PAP. Etat : New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L0-9781836207030
Quantité disponible : Plus de 20 disponibles
Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni
PAP. Etat : New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L0-9781836207030
Quantité disponible : Plus de 20 disponibles
Vendeur : Rarewaves USA, OSWEGO, IL, Etats-Unis
Paperback. Etat : New. This book helps you gain practical skills to develop and deploy LLMs. You'll learn data prep, training, pruning, quantization, and evaluation, as well as explore RAG, advanced prompting, and optimization to build robust, scalable language models. N° de réf. du vendeur LU-9781836207030
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : New. N° de réf. du vendeur 50363607-n
Quantité disponible : Plus de 20 disponibles
Vendeur : Rarewaves.com USA, London, LONDO, Royaume-Uni
Paperback. Etat : New. This book helps you gain practical skills to develop and deploy LLMs. You'll learn data prep, training, pruning, quantization, and evaluation, as well as explore RAG, advanced prompting, and optimization to build robust, scalable language models. N° de réf. du vendeur LU-9781836207030
Quantité disponible : Plus de 20 disponibles