Articles liés à Deep Learning with R for Beginners: Design neural network...

Deep Learning with R for Beginners: Design neural network models in R 3.5 using TensorFlow, Keras, and MXNet - Couverture souple

 
9781838642709: Deep Learning with R for Beginners: Design neural network models in R 3.5 using TensorFlow, Keras, and MXNet

Synopsis

Explore the world of neural networks by building powerful deep learning models using the R ecosystem

Key Features

  • Get to grips with the fundamentals of deep learning and neural networks
  • Use R 3.5 and its libraries and APIs to build deep learning models for computer vision and text processing
  • Implement effective deep learning systems in R with the help of end-to-end projects

Book Description

Deep learning finds practical applications in several domains, while R is the preferred language for designing and deploying deep learning models.

This Learning Path introduces you to the basics of deep learning and even teaches you to build a neural network model from scratch. As you make your way through the chapters, you'll explore deep learning libraries and understand how to create deep learning models for a variety of challenges, right from anomaly detection to recommendation systems. The book will then help you cover advanced topics, such as generative adversarial networks (GANs), transfer learning, and large-scale deep learning in the cloud, in addition to model optimization, overfitting, and data augmentation. Through real-world projects, you'll also get up to speed with training convolutional neural networks (CNNs), recurrent neural networks (RNNs), and long short-term memory networks (LSTMs) in R.

By the end of this Learning Path, you'll be well versed with deep learning and have the skills you need to implement a number of deep learning concepts in your research work or projects.

This Learning Path includes content from the following Packt products:

  • R Deep Learning Essentials - Second Edition by Joshua F. Wiley and Mark Hodnett
  • R Deep Learning Projects by Yuxi (Hayden) Liu and Pablo Maldonado

What you will learn

  • Implement credit card fraud detection with autoencoders
  • Train neural networks to perform handwritten digit recognition using MXNet
  • Reconstruct images using variational autoencoders
  • Explore the applications of autoencoder neural networks in clustering and dimensionality reduction
  • Create natural language processing (NLP) models using Keras and TensorFlow in R
  • Prevent models from overfitting the data to improve generalizability
  • Build shallow neural network prediction models

Who this book is for

This Learning Path is for aspiring data scientists, data analysts, machine learning developers, and deep learning enthusiasts who are well versed in machine learning concepts and are looking to explore the deep learning paradigm using R. A fundamental understanding of R programming and familiarity with the basic concepts of deep learning are necessary to get the most out of this Learning Path.

Table of Contents

  1. Getting Started with Deep Learning
  2. Training a Prediction Model
  3. Deep Learning Fundamentals
  4. Training Deep Prediction Models
  5. Image Classification Using Convolutional Neural Networks
  6. Tuning and Optimizing Models
  7. Natural Language Processing Using Deep Learning
  8. Deep Learning Models Using TensorFlow in R
  9. Anomaly Detection and Recommendation Systems
  10. Running Deep Learning Models in the Cloud
  11. The Next Level in Deep Learning
  12. Handwritten Digit Recognition Using Convolutional Neural Networks
  13. Traffic Sign Recognition for Intelligent Vehicles
  14. Fraud Detection with Autoencoders
  15. Text Generation Using Recurrent Neural Networks
  16. Sentiment Analysis with Word Embeddings

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

À propos de l?auteur

Mark Hodnett is a data scientist with over 20 years of industry experience in software development, business intelligence systems, and data science. He has worked in a variety of industries, including CRM systems, retail loyalty, IoT systems, and accountancy. He holds a master's in data science and an MBA. He works in Cork, Ireland, as a senior data scientist with AltViz.

Joshua F. Wiley is a lecturer at Monash University, conducting quantitative research on sleep, stress, and health. He earned his Ph.D. from the University of California, Los Angeles and completed postdoctoral training in primary care and prevention. In statistics and data science, Joshua focuses on biostatistics and is interested in reproducible research and graphical displays of data and statistical models. He develops or co-develops a number of R packages including Varian, a package to conduct Bayesian scale-location structural equation models, and MplusAutomation, a popular package that links R to the commercial Mplus software.

Yuxi (Hayden) Liu is an experienced data scientist who's focused on developing machine learning and deep learning models and systems. He has worked in a variety of data-driven domains and has applied his machine learning expertise to computational advertising, recommendation, and network anomaly detection. He published five first-authored IEEE transaction and conference papers during his master's research at the University of Toronto. He is an education enthusiast and the author of a series of machine learning books. His first book, the first edition of Python Machine Learning By Example, was a #1 bestseller on Amazon India in 2017 and 2018. His other books include R Deep Learning Projects and Hands-On Deep Learning Architectures with Python published by Packt.

Pablo Maldonado is an applied mathematician and data scientist with a taste for software development since his days of programming BASIC on a Tandy 1000. As an academic and business consultant, he spends a great deal of his time building applied artificial intelligence solutions for text analytics, sensor and transactional data, and reinforcement learning. Pablo earned his Ph.D. in applied mathematics (with focus on mathematical game theory) at the Universite Pierre et Marie Curie in Paris, France.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Acheter D'occasion

état :  Assez bon
Gut/Very good: Buch bzw. Schutzumschlag...
Afficher cet article
EUR 17,03

Autre devise

EUR 2,50 expédition depuis Allemagne vers France

Destinations, frais et délais

Acheter neuf

Afficher cet article
EUR 52,25

Autre devise

EUR 4,65 expédition depuis Royaume-Uni vers France

Destinations, frais et délais

Résultats de recherche pour Deep Learning with R for Beginners: Design neural network...

Image d'archives

Hodnett, Mark, Wiley, Joshua F.
Edité par Packt Publishing, 2019
ISBN 10 : 1838642706 ISBN 13 : 9781838642709
Ancien ou d'occasion Couverture souple

Vendeur : medimops, Berlin, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : very good. Gut/Very good: Buch bzw. Schutzumschlag mit wenigen Gebrauchsspuren an Einband, Schutzumschlag oder Seiten. / Describes a book or dust jacket that does show some signs of wear on either the binding, dust jacket or pages. N° de réf. du vendeur M01838642706-V

Contacter le vendeur

Acheter D'occasion

EUR 17,03
Autre devise
Frais de port : EUR 2,50
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Hodnett, Mark; Wiley, Joshua F.; Liu, Yuxi (Hayden); Maldonado, Pablo
Edité par Packt Publishing, 2019
ISBN 10 : 1838642706 ISBN 13 : 9781838642709
Neuf Couverture souple

Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. In. N° de réf. du vendeur ria9781838642709_new

Contacter le vendeur

Acheter neuf

EUR 52,25
Autre devise
Frais de port : EUR 4,65
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Mark Hodnett
Edité par Packt Publishing, 2019
ISBN 10 : 1838642706 ISBN 13 : 9781838642709
Neuf PAP
impression à la demande

Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

PAP. Etat : New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L0-9781838642709

Contacter le vendeur

Acheter neuf

EUR 53,17
Autre devise
Frais de port : EUR 6,90
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Mark Hodnett, Joshua F. Wiley, Yuxi (Hayden) Liu, Pablo Maldonado
Edité par Packt Publishing 2019-05-20, 2019
ISBN 10 : 1838642706 ISBN 13 : 9781838642709
Neuf Paperback

Vendeur : Chiron Media, Wallingford, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : New. N° de réf. du vendeur 6666-IUK-9781838642709

Contacter le vendeur

Acheter neuf

EUR 49,03
Autre devise
Frais de port : EUR 11,06
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 10 disponible(s)

Ajouter au panier

Image d'archives

Mark Hodnett
Edité par Packt Publishing, 2019
ISBN 10 : 1838642706 ISBN 13 : 9781838642709
Neuf PAP
impression à la demande

Vendeur : PBShop.store US, Wood Dale, IL, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

PAP. Etat : New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L0-9781838642709

Contacter le vendeur

Acheter neuf

EUR 60,09
Autre devise
Frais de port : Gratuit
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Mark Hodnett; Joshua F. Wiley; Yuxi (Hayden) Liu; Pablo Maldonado
Edité par Packt Publishing, Limited, 2019
ISBN 10 : 1838642706 ISBN 13 : 9781838642709
Neuf Couverture souple
impression à la demande

Vendeur : Majestic Books, Hounslow, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Print on Demand pp. 612. N° de réf. du vendeur 369194619

Contacter le vendeur

Acheter neuf

EUR 61,74
Autre devise
Frais de port : EUR 10,31
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 4 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Hodnett, Mark|Wiley, Joshua F.|Liu, Yuxi (Hayden)
Edité par Packt Publishing, 2019
ISBN 10 : 1838642706 ISBN 13 : 9781838642709
Neuf Couverture souple
impression à la demande

Vendeur : moluna, Greven, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This Learning Path is your step-by-step guide to building deep learning models using R s wide range of deep learning libraries and frameworks. Through multiple real-world projects and expert guidance and tips, you ll gain the exact knowledge you need to get. N° de réf. du vendeur 290355093

Contacter le vendeur

Acheter neuf

EUR 64,62
Autre devise
Frais de port : EUR 9,70
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Mark Hodnett
Edité par Packt Publishing, 2019
ISBN 10 : 1838642706 ISBN 13 : 9781838642709
Neuf Taschenbuch
impression à la demande

Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Explore the world of neural networks by building powerful deep learning models using the R ecosystemKey Features: Get to grips with the fundamentals of deep learning and neural networks Use R 3.5 and its libraries and APIs to build deep learning models for computer vision and text processing Implement effective deep learning systems in R with the help of end-to-end projectsBook Description:Deep learning has a range of practical applications in several domains, while R is the preferred language for designing and deploying deep learning models.This Learning Path introduces you to the basics of deep learning and even teaches you to build a neural network model from scratch. As you make your way through the chapters, you'll explore deep learning libraries and understand how to create deep learning models for a variety of challenges, right from anomaly detection to recommendation systems. The Learning Path will then help you cover advanced topics, such as generative adversarial networks (GANs), transfer learning, and large-scale deep learning in the cloud, in addition to model optimization, overfitting, and data augmentation. Through real-world projects, you'll also get up to speed with training convolutional neural networks (CNNs), recurrent neural networks (RNNs), and long short-term memory networks (LSTMs) in R.By the end of this Learning Path, you'll be well-versed with deep learning and have the skills you need to implement a number of deep learning concepts in your research work or projects.What You Will Learn: Implement credit card fraud detection with autoencoders Train neural networks to perform handwritten digit recognition using MXNet Reconstruct images using variational autoencoders Explore the applications of autoencoder neural networks in clustering and dimensionality reduction Create natural language processing (NLP) models using Keras and TensorFlow in R Prevent models from overfitting the data to improve generalizability Build shallow neural network prediction modelsWho this book is for:This Learning Path is for aspiring data scientists, data analysts, machine learning developers, and deep learning enthusiasts who are well versed in machine learning concepts and are looking to explore the deep learning paradigm using R. A fundamental understanding of R programming and familiarity with the basic concepts of deep learning are necessary to get the most out of this Learning Path. N° de réf. du vendeur 9781838642709

Contacter le vendeur

Acheter neuf

EUR 75,72
Autre devise
Frais de port : EUR 10,99
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Mark Hodnett; Joshua F. Wiley; Yuxi (Hayden) Liu; Pablo Maldonado
Edité par Packt Publishing, 2019
ISBN 10 : 1838642706 ISBN 13 : 9781838642709
Neuf Couverture souple

Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur ABLIING23Mar2912160228332

Contacter le vendeur

Acheter neuf

EUR 50,68
Autre devise
Frais de port : EUR 63,63
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Hodnett, Mark, Wiley, Joshua F., Liu, Yuxi (Hayden), Maldona
Edité par Packt Publishing, 2019
ISBN 10 : 1838642706 ISBN 13 : 9781838642709
Neuf Paperback

Vendeur : Mispah books, Redhill, SURRE, Royaume-Uni

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : New. New. book. N° de réf. du vendeur ERICA75818386427065

Contacter le vendeur

Acheter neuf

EUR 85,19
Autre devise
Frais de port : EUR 29,12
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier