InformationTheory in Computer Visionand Pattern Recognition - Couverture rigide

Escolano, Francisco; Suau, Pablo; Bonev, Boyan

 
9781848822962: InformationTheory in Computer Visionand Pattern Recognition

Synopsis

Information theory has proved to be effective for solving many computer vision and pattern recognition (CVPR) problems (such as image matching, clustering and segmentation, saliency detection, feature selection, optimal classifier design and many others). Nowadays, researchers are widely bringing information theory elements to the CVPR arena. Among these elements there are measures (entropy, mutual information...), principles (maximum entropy, minimax entropy...) and theories (rate distortion theory, method of types...).

This book explores and introduces the latter elements through an incremental complexity approach at the same time where CVPR problems are formulated and the most representative algorithms are presented. Interesting connections between information theory principles when applied to different problems are highlighted, seeking a comprehensive research roadmap. The result is a novel tool both for CVPR and machine learning researchers, and contributes to across-fertilization of both areas.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

Présentation de l'éditeur

This book provides comprehensive coverage of information theory elements implied in modern CVPR algorithms. It introduces information theory to researchers in CVPR, and additionally introduces interesting CVPR problems to information theorists.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Autres éditions populaires du même titre

9781447156932: Information Theory in Computer Vision and Pattern Recognition

Edition présentée

ISBN 10 :  1447156935 ISBN 13 :  9781447156932
Editeur : Springer, 2014
Couverture souple