Master machine learning through clarity, not complexity―in a book engineered to teach with exceptional conciseness.
Translated into 11 languages and used in thousands of universities worldwide, this book takes a unique approach: it assumes that your time is valuable. Instead of drowning you in theory or skimming the surface, it delivers a complete education in modern machine learning, focusing on what matters in practice. From fundamental algorithms that form the backbone of many applications, to cutting-edge deep learning and neural networks, you'll understand how these tools work and how to use them.
What sets this book apart is its careful progression through key concepts. You'll start with essential mathematical concepts and gradually progress through the most practically important machine learning algorithms. You'll learn practical skills like feature engineering, regularization, handling imbalanced datasets, ensembles, and model evaluation that help turn theory into working systems.
The book covers not just supervised learning, but also clustering, topic modeling, metric learning, learning to rank, and recommendation systems, giving you a complete toolkit for solving modern machine learning challenges.
This isn't just another theoretical textbook. Every chapter reflects the author's real-world experience, focusing on techniques that work in practice. Whether you're building a recommendation system, analyzing customer data, or working with images and text, you'll find practical guidance here.
This isn't a high-level overview either. The book explores each concept with precisely the right level of technical detail-enough to create those crucial "a-ha!" moments of understanding, but not so much that you get overwhelmed by mathematical notation or theoretical abstractions. It hits that sweet spot where complex ideas click into place naturally, making it valuable for both newcomers looking to build a strong foundation and experienced practitioners seeking to expand their toolkit.
What's Inside
About the Reader
The book assumes a basic foundation in college-level mathematics. However, it's entirely self-contained, introducing all necessary mathematical concepts through intuitive explanations. This approach ensures that readers with basic mathematical knowledge can follow along without getting lost in complex equations.
Endorsed by Peter Norvig, Research Director at Google, co-author of AIMA, the most popular AI textbook in the world, Aurélien Géron, Senior AI Engineer, author of the bestseller Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, and other industry leaders.
Read endorsements on themlbook.com
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Andriy Burkov is the author of "The Hundred-Page Machine Learning Book" and "Machine Learning Engineering," both of which became #1 Best Sellers on Amazon. He holds a Ph.D. in Artificial Intelligence and is a recognized expert in machine learning and natural language processing.As a machine learning expert and leader, Andriy has successfully led dozens of production-grade AI projects in different business domains at Fujitsu and Gartner. His previous books have been translated into more than a dozen languages and are used as textbooks in many universities worldwide. His work has impacted millions of machine learning practitioners and researchers worldwide.Currently, Andriy is the Head of Machine Learning at TalentNeuron, where he develops AI solutions for talent marketplace analytics. He uses language models and other machine learning tools to analyze billions of job postings across 30+ languages in near real time.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 10,12 expédition depuis Etats-Unis vers France
Destinations, frais et délaisEUR 6,89 expédition depuis Etats-Unis vers France
Destinations, frais et délaisVendeur : Better World Books, Mishawaka, IN, Etats-Unis
Etat : As New. Used book that is in almost brand-new condition. N° de réf. du vendeur 40840381-6
Quantité disponible : 2 disponible(s)
Vendeur : BooksRun, Philadelphia, PA, Etats-Unis
Hardcover. Etat : Very Good. Hard Cover ed. Ship within 24hrs. Satisfaction 100% guaranteed. APO/FPO addresses supported. N° de réf. du vendeur 1999579518-8-1
Quantité disponible : 1 disponible(s)
Vendeur : -OnTimeBooks-, Phoenix, AZ, Etats-Unis
Etat : very_good. Gently read. May have name of previous ownership, or ex-library edition. Binding tight; spine straight and smooth, with no creasing; covers clean and crisp. Minimal signs of handling or shelving. 100% GUARANTEE! Shipped with delivery confirmation, if youâre not satisfied with purchase please return item for full refund. Ships USPS Media Mail. N° de réf. du vendeur OTV.1999579518.VG
Quantité disponible : 1 disponible(s)
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9781999579517
Quantité disponible : Plus de 20 disponibles
Vendeur : BargainBookStores, Grand Rapids, MI, Etats-Unis
Hardback or Cased Book. Etat : New. The Hundred-Page Machine Learning Book 1.3. Book. N° de réf. du vendeur BBS-9781999579517
Quantité disponible : 5 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 36644947-n
Quantité disponible : Plus de 20 disponibles
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9781999579517_new
Quantité disponible : Plus de 20 disponibles
Vendeur : Rarewaves USA, OSWEGO, IL, Etats-Unis
Hardback. Etat : New. Hard Cover ed. N° de réf. du vendeur LU-9781999579517
Quantité disponible : Plus de 20 disponibles
Vendeur : Rarewaves USA United, OSWEGO, IL, Etats-Unis
Hardback. Etat : New. Hard Cover ed. N° de réf. du vendeur LU-9781999579517
Quantité disponible : Plus de 20 disponibles
Vendeur : Speedyhen, London, Royaume-Uni
Etat : NEW. N° de réf. du vendeur NW9781999579517
Quantité disponible : 2 disponible(s)