Articles liés à Modern Music-Inspired Optimization Algorithms for Electric...

Modern Music-Inspired Optimization Algorithms for Electric Power Systems: Modeling, Analysis and Practice - Couverture rigide

 
9783030120436: Modern Music-Inspired Optimization Algorithms for Electric Power Systems: Modeling, Analysis and Practice

Synopsis

In today's world, with an increase in the breadth and scope of real-world engineering optimization problems as well as with the advent of big data, improving the performance and efficiency of algorithms for solving such problems has become an indispensable need for specialists and researchers. In contrast to conventional books in the field that employ traditional single-stage computational, single-dimensional, and single-homogeneous optimization algorithms, this book addresses multiple newfound architectures for meta-heuristic music-inspired optimization algorithms. These proposed algorithms, with multi-stage computational, multi-dimensional, and multi-inhomogeneous structures, bring about a new direction in the architecture of meta-heuristic algorithms for solving complicated, real-world, large-scale, non-convex, non-smooth engineering optimization problems having a non-linear, mixed-integer nature with big data. The architectures of these new algorithms may also be appropriate for finding an optimal solution or a Pareto-optimal solution set with higher accuracy and speed in comparison to other optimization algorithms, when feasible regions of the solution space and/or dimensions of the optimization problem increase.
This book, unlike conventional books on power systems problems that only consider simple and impractical models, deals with complicated, techno-economic, real-world, large-scale models of power systems operation and planning. Innovative applicable ideas in these models make this book a precious resource for specialists and researchers with a background in power systems operation and planning.

  • Provides an understanding of the optimization problems and algorithms, particularly meta-heuristic optimization algorithms, found in fields such as engineering, economics, management, and operations research;
  • Enhances existing architectures and develops innovative architectures for meta-heuristic music-inspired optimization algorithms in order to deal with complicated, real-world, large-scale, non-convex, non-smooth engineering optimization problems having a non-linear, mixed-integer nature with big data;
  • Addresses innovative multi-level, techno-economic, real-world, large-scale, computational-logical frameworks for power systems operation and planning, and illustrates practical training on implementation of the frameworks using the meta-heuristic music-inspired optimization algorithms.


Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

À propos de l?auteur

Mohammad Kiani-Moghaddam received the B.Sc. degree with first class honors in Electrical Engineering from the Islamic Azad University of Najafabad, Isfahan, Iran, and the M.Sc. degree with first class honors in Electrical Engineering from the Shahid Beheshti University, Tehran, Iran. His emphasis is on the research, design, and application of complex mathematical models for use in the analysis of power systems with a particular focus on risk assessment, worth-based reliability evaluation, economic strategies, as well as artificial intelligence and optimization theory. He has served as a peer reviewer for over four international journals.
Mojtaba Shivaie is currently an Assistant Professor in the Faculty of Electrical Engineering and Robotic at the Shahrood University of Technology, Shahrood, Iran. He obtained the B.Sc. degree with first class honors in Electrical Engineering from the Semnan University, Semnan, Iran, in 2008. He also receivedthe M.Sc. and Ph.D. degrees with first class honors, both in Electrical Engineering, from the Shahid Beheshti University, Tehran, Iran, in 2010 and 2015, respectively. He has worked extensively in the areas of power systems, smart distribution grids, stochastic simulation and optimization techniques, and he (with Mr. Kiani-Moghaddam and Prof. Weinsier) is the inventor of a modern optimization technique known as "symphony orchestra search algorithm" and an innovative architecture for competitive electricity markets known as "Hypaethral market". He was awarded the Dr. Shahriari's scholarship by the office of honor students of the Shahid Beheshti University and the Dr. Kazemi-Ashtiani's award by the Iran's National Elites Foundation for outstanding educational and research achievements. He has served as an editorial board of the International Transaction of Electrical and Computer Engineers System journal and the Control and Systems Engineering journal and also a peer reviewer for over twelve high impact journals. He was a recipient of the outstanding reviewer award of the Applied Soft Computing in 2014, the Energy Conversion and Management in 2016, and the Electric Power Systems Research in 2017.
Philip D. Weinsier is currently Professor and Electrical/Electronic Engineering Technology Program Director at Bowling Green State University-Firelands. He received his BS degrees in Physics/Mathematics and Industrial Education/Teaching from Berry College in 1978; MS degree in Industrial Education and EdD degree in Vocational/Technical Education from Clemson University in 1979 and 1990, respectively. He is currently senior editor of the International Journal of Modern Engineering and the International Journal of Engineering Research and Innovation, and Editor-in-Chief of the Technology Interface International Journal. He is a Fulbright Scholar, a lifetime member of the International Fulbright Association, and a member of the European Association for Research on Learning and Instruction since 1989.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Acheter D'occasion

XXVII, 727 p. Hardcover. Versand...
Afficher cet article

EUR 10 expédition depuis Allemagne vers France

Destinations, frais et délais

Acheter neuf

Afficher cet article
EUR 137,15

Autre devise

EUR 2,85 expédition depuis Etats-Unis vers France

Destinations, frais et délais

Autres éditions populaires du même titre

9783030120467: Modern Music-inspired Optimization Algorithms for Electric Power Systems: Modeling, Analysis and Practice

Edition présentée

ISBN 10 :  3030120465 ISBN 13 :  9783030120467
Editeur : Springer Nature Switzerland AG, 2020
Couverture souple

Résultats de recherche pour Modern Music-Inspired Optimization Algorithms for Electric...

Image d'archives

Kiani-Moghaddam, Mohammad et al.
Edité par Cham, Springer., 2019
ISBN 10 : 3030120430 ISBN 13 : 9783030120436
Ancien ou d'occasion Couverture rigide

Vendeur : Universitätsbuchhandlung Herta Hold GmbH, Berlin, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

XXVII, 727 p. Hardcover. Versand aus Deutschland / We dispatch from Germany via Air Mail. Einband bestoßen, daher Mängelexemplar gestempelt, sonst sehr guter Zustand. Imperfect copy due to slightly bumped cover, apart from this in very good condition. Stamped. Power Systems. Sprache: Englisch. N° de réf. du vendeur 34414AB

Contacter le vendeur

Acheter D'occasion

EUR 24
Autre devise
Frais de port : EUR 10
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 4 disponible(s)

Ajouter au panier

Image d'archives

0
Edité par Springer, 2019
ISBN 10 : 3030120430 ISBN 13 : 9783030120436
Neuf Couverture rigide

Vendeur : Basi6 International, Irving, TX, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. N° de réf. du vendeur ABEJUNE24-258801

Contacter le vendeur

Acheter neuf

EUR 137,15
Autre devise
Frais de port : EUR 2,85
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Mohammad Kiani-Moghaddam|Mojtaba Shivaie|Philip D. Weinsier
ISBN 10 : 3030120430 ISBN 13 : 9783030120436
Neuf Couverture rigide
impression à la demande

Vendeur : moluna, Greven, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Provides an understanding of the optimization problems and algorithms, particularly meta-heuristic optimization algorithms, found in fields such as engineering, economics, management, and operations researchEnhances existing architectures and deve. N° de réf. du vendeur 260929062

Contacter le vendeur

Acheter neuf

EUR 180,07
Autre devise
Frais de port : EUR 9,70
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Mohammad Kiani-Moghaddam
ISBN 10 : 3030120430 ISBN 13 : 9783030120436
Neuf Couverture rigide

Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - In today's world, with an increase in the breadth and scope of real-world engineering optimization problems as well as with the advent of big data, improving the performance and efficiency of algorithms for solving such problems has become an indispensable need for specialists and researchers. In contrast to conventional books in the field that employ traditional single-stage computational, single-dimensional, and single-homogeneous optimization algorithms, this book addresses multiple newfound architectures for meta-heuristic music-inspired optimization algorithms. These proposed algorithms, with multi-stage computational, multi-dimensional, and multi-inhomogeneous structures, bring about a new direction in the architecture of meta-heuristic algorithms for solving complicated, real-world, large-scale, non-convex, non-smooth engineering optimization problems having a non-linear, mixed-integer nature with big data. The architectures of these new algorithms may also be appropriate for finding an optimal solution or a Pareto-optimal solution set with higher accuracy and speed in comparison to other optimization algorithms, when feasible regions of the solution space and/or dimensions of the optimization problem increase.This book, unlike conventional books on power systems problems that only consider simple and impractical models, deals with complicated, techno-economic, real-world, large-scale models of power systems operation and planning. Innovative applicable ideas in these models make this book a precious resource for specialists and researchers with a background in power systems operation and planning.Provides an understanding of the optimization problems and algorithms, particularly meta-heuristic optimization algorithms, found in fields such as engineering, economics, management, and operations research;Enhances existing architectures and develops innovative architectures for meta-heuristic music-inspired optimization algorithms in order to deal with complicated, real-world, large-scale, non-convex, non-smooth engineering optimization problems having a non-linear, mixed-integer nature with big data;Addresses innovative multi-level, techno-economic, real-world, large-scale, computational-logical frameworks for power systems operation and planning, and illustrates practical training on implementation of the frameworks using the meta-heuristic music-inspired optimization algorithms. N° de réf. du vendeur 9783030120436

Contacter le vendeur

Acheter neuf

EUR 213,99
Autre devise
Frais de port : EUR 10,99
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Mohammad Kiani-Moghaddam
ISBN 10 : 3030120430 ISBN 13 : 9783030120436
Neuf Couverture rigide
impression à la demande

Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -In today's world, with an increase in the breadth and scope of real-world engineering optimization problems as well as with the advent of big data, improving the performance and efficiency of algorithms for solving such problems has become an indispensable need for specialists and researchers. In contrast to conventional books in the field that employ traditional single-stage computational, single-dimensional, and single-homogeneous optimization algorithms, this book addresses multiple newfound architectures for meta-heuristic music-inspired optimization algorithms. These proposed algorithms, with multi-stage computational, multi-dimensional, and multi-inhomogeneous structures, bring about a new direction in the architecture of meta-heuristic algorithms for solving complicated, real-world, large-scale, non-convex, non-smooth engineering optimization problems having a non-linear, mixed-integer nature with big data. The architectures of these new algorithms may also be appropriate for finding an optimal solution or a Pareto-optimal solution set with higher accuracy and speed in comparison to other optimization algorithms, when feasible regions of the solution space and/or dimensions of the optimization problem increase.This book, unlike conventional books on power systems problems that only consider simple and impractical models, deals with complicated, techno-economic, real-world, large-scale models of power systems operation and planning. Innovative applicable ideas in these models make this book a precious resource for specialists and researchers with a background in power systems operation and planning.Provides an understanding of the optimization problems and algorithms, particularly meta-heuristic optimization algorithms, found in fields such as engineering, economics, management, and operations research;Enhances existing architectures and develops innovative architectures for meta-heuristic music-inspired optimization algorithms in order to deal with complicated, real-world, large-scale, non-convex, non-smooth engineering optimization problems having a non-linear, mixed-integer nature with big data;Addresses innovative multi-level, techno-economic, real-world, large-scale, computational-logical frameworks for power systems operation and planning, and illustrates practical training on implementation of the frameworks using the meta-heuristic music-inspired optimization algorithms. 756 pp. Englisch. N° de réf. du vendeur 9783030120436

Contacter le vendeur

Acheter neuf

EUR 213,99
Autre devise
Frais de port : EUR 11
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Mohammad Kiani-Moghaddam
ISBN 10 : 3030120430 ISBN 13 : 9783030120436
Neuf Couverture rigide

Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. Neuware -In today¿s world, with an increase in the breadth and scope of real-world engineering optimization problems as well as with the advent of big data, improving the performance and efficiency of algorithms for solving such problems has become an indispensable need for specialists and researchers. In contrast to conventional books in the field that employ traditional single-stage computational, single-dimensional, and single-homogeneous optimization algorithms, this book addresses multiple newfound architectures for meta-heuristic music-inspired optimization algorithms. These proposed algorithms, with multi-stage computational, multi-dimensional, and multi-inhomogeneous structures, bring about a new direction in the architecture of meta-heuristic algorithms for solving complicated, real-world, large-scale, non-convex, non-smooth engineering optimization problems having a non-linear, mixed-integer nature with big data. The architectures of these new algorithms may also be appropriate for finding an optimal solution or a Pareto-optimal solution set with higher accuracy and speed in comparison to other optimization algorithms, when feasible regions of the solution space and/or dimensions of the optimization problem increase.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 756 pp. Englisch. N° de réf. du vendeur 9783030120436

Contacter le vendeur

Acheter neuf

EUR 213,99
Autre devise
Frais de port : EUR 15
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image d'archives

Kiani-Moghaddam, Mohammad; Shivaie, Mojtaba; Weinsier, Philip D.
Edité par Springer, 2019
ISBN 10 : 3030120430 ISBN 13 : 9783030120436
Neuf Couverture rigide

Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. In. N° de réf. du vendeur ria9783030120436_new

Contacter le vendeur

Acheter neuf

EUR 227,17
Autre devise
Frais de port : EUR 4,60
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Kiani-Moghaddam, Mohammad; Shivaie, Mojtaba; Weinsier, Philip D.
Edité par Springer, 2019
ISBN 10 : 3030120430 ISBN 13 : 9783030120436
Neuf Couverture rigide

Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur ABLIING23Mar3113020006949

Contacter le vendeur

Acheter neuf

EUR 202,28
Autre devise
Frais de port : EUR 63,70
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Kiani-Moghaddam, Mohammad, Shivaie, Mojtaba, Weinsier, Phili
Edité par Springer, 2019
ISBN 10 : 3030120430 ISBN 13 : 9783030120436
Neuf Couverture rigide

Vendeur : Mispah books, Redhill, SURRE, Royaume-Uni

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Hardcover. Etat : New. New. book. N° de réf. du vendeur ERICA77330301204306

Contacter le vendeur

Acheter neuf

EUR 238,78
Autre devise
Frais de port : EUR 28,83
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Kiani-Moghaddam, Mohammad (Author)/ Shivaie, Mojtaba (Author)/ Weinsier, Philip D. (Author)
Edité par Springer, 2019
ISBN 10 : 3030120430 ISBN 13 : 9783030120436
Neuf Couverture rigide

Vendeur : Revaluation Books, Exeter, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Hardcover. Etat : Brand New. 727 pages. 9.50x6.25x1.75 inches. In Stock. N° de réf. du vendeur x-3030120430

Contacter le vendeur

Acheter neuf

EUR 305,43
Autre devise
Frais de port : EUR 11,53
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier