Hybrid System Identification helps readers to build mathematical models of dynamical systems switching between different operating modes, from their experimental observations. It provides an overview of the interaction between system identification, machine learning and pattern recognition fields in explaining and analysing hybrid system identification. It emphasises the optimization and computational complexity issues that lie at the core of the problems considered and sets them aside from standard system identification problems. The book presents practical methods that leverage this complexity, as well as a broad view of state-of-the-art machine learning methods.
The authors illustrate the key technical points using examples and figures to help the reader understand the material. The book includes an in-depth discussion and computational analysis of hybrid system identification problems, moving from the basic questions of the definition of hybrid systems and system identification to methods of hybrid system identification and the estimation of switched linear/affine and piecewise affine models. The authors also give an overview of the various applications of hybrid systems, discuss the connections to other fields, and describe more advanced material on recursive, state-space and nonlinear hybrid system identification.
Hybrid System Identification includes a detailed exposition of major methods, which allows researchers and practitioners to acquaint themselves rapidly with state-of-the-art tools. The book is also a sound basis for graduate and undergraduate students studying this area of control, as the presentation and form of the book provides the background and coverage necessary for a full understanding of hybrid system identification, whether the reader is initially familiar with system identification related to hybrid systems or not.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Fabien Lauer obtained his Ph.D. in Control Engineering from the University Henri Poincaré Nancy 1, France, in 2008. He was then a post-doctoral fellow at the Heidelberg Collaboratory for Image Processing, Germany, and is now an Associate Professor of Computer Science at the Université de Lorraine, France, since 2009. He published 18 peer-reviewed journal papers, 2 book chapters and 17 conference papers on hybrid system identification and machine learning.
Gérard Bloch has been Associate Professor at the University Henri Poincaré Nancy 1, France, then Full Professor, at the Université de Lorraine, France, from 1991 until 2017, where he took several pedagogical or administrative positions. He coauthored one book and one book chapter, published 35 peer-reviewed journal papers, and 65 conference papers on system identification, machine learning and intelligent control applications.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Vendeur : Universitätsbuchhandlung Herta Hold GmbH, Berlin, Allemagne
Softcover reprint of the original 1st ed. 2019. 16 x 24 cm. XXI, 253 S. XXI, 253 p. 35 illus., 34 illus. in color. Softcover. (Lecture Notes in Control and Information Sciences). Sprache: Englisch. N° de réf. du vendeur 1889VB
Quantité disponible : 1 disponible(s)
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLIING23Mar3113020007311
Quantité disponible : Plus de 20 disponibles
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9783030130916_new
Quantité disponible : Plus de 20 disponibles
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware - Hybrid System Identification helps readers to build mathematical models of dynamical systems switching between different operating modes, from their experimental observations. It provides an overview of the interaction between system identification, machine learning and pattern recognition fields in explaining and analysing hybrid system identification. It emphasises the optimization and computational complexity issues that lie at the core of the problems considered and sets them aside from standard system identification problems. The book presents practical methods that leverage this complexity, as well as a broad view of state-of-the-art machine learning methods.The authors illustrate the key technical points using examples and figures to help the reader understand the material. The book includes an in-depth discussion and computational analysis of hybrid system identification problems, moving from the basic questions of the definition of hybrid systems and system identification to methods of hybrid system identification and the estimation of switched linear/affine and piecewise affine models. The authors also give an overview of the various applications of hybrid systems, discuss the connections to other fields, and describe more advanced material on recursive, state-space and nonlinear hybrid system identification.Hybrid System Identification includes a detailed exposition of major methods, which allows researchers and practitioners to acquaint themselves rapidly with state-of-the-art tools. The book is also a sound basis for graduate and undergraduate students studying this area of control, as the presentation and form of the book provides the background and coverage necessary for a full understanding of hybrid system identification, whether the reader is initially familiar with system identification related to hybrid systems or not. 276 pp. Englisch. N° de réf. du vendeur 9783030130916
Quantité disponible : 2 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Provides a self-contained and comprehensive treatment on hybrid system identificationPresents readers with a broad view and introduction to state-of-the-art machine learning methodsIncludes a detailed exposition of al. N° de réf. du vendeur 337743306
Quantité disponible : Plus de 20 disponibles
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. pp. 253. N° de réf. du vendeur 26376540475
Quantité disponible : 4 disponible(s)
Vendeur : Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlande
Etat : New. N° de réf. du vendeur V9783030130916
Quantité disponible : 15 disponible(s)
Vendeur : preigu, Osnabrück, Allemagne
Taschenbuch. Etat : Neu. Hybrid System Identification | Theory and Algorithms for Learning Switching Models | Gérard Bloch (u. a.) | Taschenbuch | xxi | Englisch | 2019 | Springer International Publishing | EAN 9783030130916 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. N° de réf. du vendeur 117406614
Quantité disponible : 5 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. Print on Demand pp. 253. N° de réf. du vendeur 369504996
Quantité disponible : 4 disponible(s)
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. PRINT ON DEMAND pp. 253. N° de réf. du vendeur 18376540465
Quantité disponible : 4 disponible(s)