Introduction.- Standard Bayesian Network Models for Spatial Time Series Prediction.- Bayesian Network with added Residual Correction Mechanism.- Spatial Bayesian Network.- Semantic Bayesian Network.- Advanced Bayesian Network Models with Fuzzy Extension.- Comparative Study of Parameter Learning Complexity.- Spatial Time Series Prediction using Advanced BN Models- An Application Perspective.- Summary and Future Research.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
EUR 9,70 expédition depuis Allemagne vers France
Destinations, frais et délaisVendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This is the first text that throws light on the recent advancements in developing enhanced Bayesian network (BN) models to address the various challenges in spatial time series predictionThe monograph covers both theoretical and empirical aspects of a . N° de réf. du vendeur 335812428
Quantité disponible : Plus de 20 disponibles
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9783030277482_new
Quantité disponible : Plus de 20 disponibles
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Buch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This research monograph is highly contextual in the present era of spatial/spatio-temporal data explosion. The overall text contains many interesting results that are worth applying in practice, while it is also a source of intriguing and motivating questions for advanced research on spatial data science.The monograph is primarily prepared for graduate students of Computer Science, who wish to employ probabilistic graphical models, especially Bayesian networks (BNs), for applied research on spatial/spatio-temporal data. Students of any other discipline of engineering, science, and technology, will also find this monograph useful. Research students looking for a suitable problem for their MS or PhD thesis will also find this monograph beneficial. The open research problems as discussed with sufficient references in Chapter-8 and Chapter-9 can immensely help graduate researchers to identify topics of their own choice. The various illustrations and proofs presented throughout the monograph may help them to better understand the working principles of the models. The present monograph, containing sufficient description of the parameter learning and inference generation process for each enhanced BN model, can also serve as an algorithmic cookbook for the relevant system developers. N° de réf. du vendeur 9783030277482
Quantité disponible : 1 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Buch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This research monograph is highly contextual in the present era of spatial/spatio-temporal data explosion. The overall text contains many interesting results that are worth applying in practice, while it is also a source of intriguing and motivating questions for advanced research on spatial data science.The monograph is primarily prepared for graduate students of Computer Science, who wish to employ probabilistic graphical models, especially Bayesian networks (BNs), for applied research on spatial/spatio-temporal data. Students of any other discipline of engineering, science, and technology, will also find this monograph useful. Research students looking for a suitable problem for their MS or PhD thesis will also find this monograph beneficial. The open research problems as discussed with sufficient references in Chapter-8 and Chapter-9 can immensely help graduate researchers to identify topics of their own choice. The various illustrations and proofs presented throughout the monograph may help them to better understand the working principles of the models. The present monograph, containing sufficient description of the parameter learning and inference generation process for each enhanced BN model, can also serve as an algorithmic cookbook for the relevant system developers. 176 pp. Englisch. N° de réf. du vendeur 9783030277482
Quantité disponible : 2 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Buch. Etat : Neu. Neuware -This research monograph is highly contextual in the present era of spatial/spatio-temporal data explosion. The overall text contains many interesting results that are worth applying in practice, while it is also a source of intriguing and motivating questions for advanced research on spatial data science.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 176 pp. Englisch. N° de réf. du vendeur 9783030277482
Quantité disponible : 2 disponible(s)
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. pp. XXIII, 149 67 illus., 59 illus. in color. 1 Edition NO-PA16APR2015-KAP. N° de réf. du vendeur 26384556980
Quantité disponible : 4 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. Print on Demand pp. XXIII, 149 67 illus., 59 illus. in color. N° de réf. du vendeur 379347051
Quantité disponible : 4 disponible(s)
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. PRINT ON DEMAND pp. XXIII, 149 67 illus., 59 illus. in color. N° de réf. du vendeur 18384556990
Quantité disponible : 4 disponible(s)
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Hardcover. Etat : Brand New. 172 pages. 9.25x6.10x0.59 inches. In Stock. N° de réf. du vendeur x-3030277488
Quantité disponible : 2 disponible(s)