Computer Vision for X-Ray Testing: Imaging, Systems, Image Databases, and Algorithms - Couverture souple

Mery, Domingo; Pieringer, Christian

 
9783030567712: Computer Vision for X-Ray Testing: Imaging, Systems, Image Databases, and Algorithms

Synopsis

[FIRST EDITION] This accessible textbook presents an introduction to computer vision algorithms for industrially-relevant applications of X-ray testing. Features: introduces the mathematical background for monocular and multiple view geometry; describes the main techniques for image processing used in X-ray testing; presents a range of different representations for X-ray images, explaining how these enable new features to be extracted from the original image; examines a range of known X-ray image classifiers and classification strategies; discusses some basic concepts for the simulation of X-ray images and presents simple geometric and imaging models that can be used in the simulation; reviews a variety of applications for X-ray testing, from industrial inspection and baggage screening to the quality control of natural products; provides supporting material at an associated website, including a database of X-ray images and a Matlab toolbox for use with the book’s many examples.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

À propos de l?auteur

Dr. Domingo Mery is a Full Professor at the Machine Intelligence Group (GRIMA) of the Department of Computer Sciences, and Director of Research and Innovation at the School of Engineering, at the Pontifical Catholic University of Chile, Santiago, Chile. Dr. Christian Pieringer is an Adjunct Instructor at the same institution.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Autres éditions populaires du même titre

9783030567682: Computer Vision for X-ray Testing: Imaging, Systems, Image Databases, and Algorithms

Edition présentée

ISBN 10 :  3030567680 ISBN 13 :  9783030567682
Editeur : Springer Nature Switzerland AG, 2020
Couverture rigide