Archiving Strategies for Evolutionary Multi-objective Optimization Algorithms - Couverture souple

Livre 436 sur 538: Studies in Computational Intelligence

Schütze, Oliver; Hernández, Carlos

 
9783030637750: Archiving Strategies for Evolutionary Multi-objective Optimization Algorithms

Synopsis

This book presents an overview of archiving strategies developed over the last years by the authors that deal with suitable approximations of the sets of optimal and nearly optimal solutions of multi-objective optimization problems by means of stochastic search algorithms. All presented archivers are analyzed with respect to the approximation qualities of the limit archives that they generate and the upper bounds of the archive sizes. The convergence analysis will be done using a very broad framework that involves all existing stochastic search algorithms and that will only use minimal assumptions on the process to generate new candidate solutions. All of the presented archivers can effortlessly be coupled with any set-based multi-objective search algorithm such as multi-objective evolutionary algorithms, and the resulting hybrid method takes over the convergence properties of the chosen archiver. This book hence targets at all algorithm designers and practitioners in the fieldof multi-objective optimization.


Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

Autres éditions populaires du même titre

9783030637729: Archiving Strategies for Evolutionary Multi-objective Optimization Algorithms

Edition présentée

ISBN 10 :  3030637727 ISBN 13 :  9783030637729
Editeur : Springer Nature Switzerland AG, 2021
Couverture rigide