Articles liés à Geometric Structures of Statistical Physics, Information...

Geometric Structures of Statistical Physics, Information Geometry, and Learning: Spigl 20, Les Houches, France, July 27-31 - Couverture rigide

 
9783030779566: Geometric Structures of Statistical Physics, Information Geometry, and Learning: Spigl 20, Les Houches, France, July 27-31

Synopsis

Machine learning and artificial intelligence increasingly use methodological tools rooted in statistical physics. Conversely, limitations and pitfalls encountered in AI question the very foundations of statistical physics. This interplay between AI and statistical physics has been attested since the birth of AI, and principles underpinning statistical physics can shed new light on the conceptual basis of AI. During the last fifty years, statistical physics has been investigated through new geometric structures allowing covariant formalization of the thermodynamics. Inference methods in machine learning have begun to adapt these new geometric structures to process data in more abstract representation spaces.

This volume collects selected contributions on the interplay of statistical physics and artificial intelligence. The aim is to provide a constructive dialogue around a common foundation to allow the establishment of new principles and laws governing these two disciplines in a unified manner. The contributions were presented at the workshop on the Joint Structures and Common Foundation of Statistical Physics, Information Geometry and Inference for Learning which was held in Les Houches in July 2020. The various theoretical approaches are discussed in the context of potential applications in cognitive systems, machine learning, signal processing.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

Acheter neuf

Afficher cet article
EUR 250,30

Autre devise

EUR 9,70 expédition depuis Allemagne vers France

Destinations, frais et délais

Autres éditions populaires du même titre

9783030779597: Geometric Structures of Statistical Physics, Information Geometry, and Learning: SPIGL'20, Les Houches, France, July 27–31

Edition présentée

ISBN 10 :  3030779599 ISBN 13 :  9783030779597
Editeur : Springer, 2022
Couverture souple

Résultats de recherche pour Geometric Structures of Statistical Physics, Information...

Image fournie par le vendeur

ISBN 10 : 3030779564 ISBN 13 : 9783030779566
Neuf Couverture rigide
impression à la demande

Vendeur : moluna, Greven, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Machine learning and artificial intelligence increasingly use methodological tools rooted in statistical physics. This interplay between AI and statistical physics has been attested since the birth of AI, and principles underpinning statistical physics can . N° de réf. du vendeur 469419025

Contacter le vendeur

Acheter neuf

EUR 250,30
Autre devise
Frais de port : EUR 9,70
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Frank Nielsen
ISBN 10 : 3030779564 ISBN 13 : 9783030779566
Neuf Couverture rigide

Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - Machine learning and artificial intelligence increasingly use methodological tools rooted in statistical physics. Conversely, limitations and pitfalls encountered in AI question the very foundations of statistical physics. This interplay between AI and statistical physics has been attested since the birth of AI, and principles underpinning statistical physics can shed new light on the conceptual basis of AI. During the last fifty years, statistical physics has been investigated through new geometric structures allowing covariant formalization of the thermodynamics. Inference methods in machine learning have begun to adapt these new geometric structures to process data in more abstract representation spaces.This volume collects selected contributions on the interplay of statistical physics and artificial intelligence. The aim is to provide a constructive dialogue around a common foundation to allow the establishment of new principles and laws governing these two disciplines in a unified manner. The contributions were presented at the workshop on the Joint Structures and Common Foundation of Statistical Physics, Information Geometry and Inference for Learning which was held in Les Houches in July 2020. The various theoretical approaches are discussed in the context of potential applications in cognitive systems, machine learning, signal processing. N° de réf. du vendeur 9783030779566

Contacter le vendeur

Acheter neuf

EUR 299,59
Autre devise
Frais de port : EUR 10,99
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Frank Nielsen
ISBN 10 : 3030779564 ISBN 13 : 9783030779566
Neuf Couverture rigide
impression à la demande

Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Machine learning and artificial intelligence increasingly use methodological tools rooted in statistical physics. Conversely, limitations and pitfalls encountered in AI question the very foundations of statistical physics. This interplay between AI and statistical physics has been attested since the birth of AI, and principles underpinning statistical physics can shed new light on the conceptual basis of AI. During the last fifty years, statistical physics has been investigated through new geometric structures allowing covariant formalization of the thermodynamics. Inference methods in machine learning have begun to adapt these new geometric structures to process data in more abstract representation spaces.This volume collects selected contributions on the interplay of statistical physics and artificial intelligence. The aim is to provide a constructive dialogue around a common foundation to allow the establishment of new principles and laws governing these two disciplines in a unified manner. The contributions were presented at the workshop on the Joint Structures and Common Foundation of Statistical Physics, Information Geometry and Inference for Learning which was held in Les Houches in July 2020. The various theoretical approaches are discussed in the context of potential applications in cognitive systems, machine learning, signal processing. 476 pp. Englisch. N° de réf. du vendeur 9783030779566

Contacter le vendeur

Acheter neuf

EUR 299,59
Autre devise
Frais de port : EUR 11
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Frank Nielsen
ISBN 10 : 3030779564 ISBN 13 : 9783030779566
Neuf Couverture rigide

Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. Neuware -Machine learning and artificial intelligence increasingly use methodological tools rooted in statistical physics. Conversely, limitations and pitfalls encountered in AI question the very foundations of statistical physics. This interplay between AI and statistical physics has been attested since the birth of AI, and principles underpinning statistical physics can shed new light on the conceptual basis of AI. During the last fifty years, statistical physics has been investigated through new geometric structures allowing covariant formalization of the thermodynamics. Inference methods in machine learning have begun to adapt these new geometric structures to process data in more abstract representation spaces.This volume collects selected contributions on the interplay of statistical physics and artificial intelligence. The aim is to provide a constructive dialogue around a common foundation to allow the establishment of new principles and laws governing these two disciplines in a unified manner. The contributions were presented at the workshop on the Joint Structures and Common Foundation of Statistical Physics, Information Geometry and Inference for Learning which was held in Les Houches in July 2020. The various theoretical approaches are discussed in the context of potential applications in cognitive systems, machine learning, signal processing.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 476 pp. Englisch. N° de réf. du vendeur 9783030779566

Contacter le vendeur

Acheter neuf

EUR 299,59
Autre devise
Frais de port : EUR 15
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image d'archives

Edité par Springer, 2021
ISBN 10 : 3030779564 ISBN 13 : 9783030779566
Neuf Couverture rigide

Vendeur : Books Puddle, New York, NY, Etats-Unis

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. 1st ed. 2021 edition NO-PA16APR2015-KAP. N° de réf. du vendeur 26388813292

Contacter le vendeur

Acheter neuf

EUR 384,08
Autre devise
Frais de port : EUR 7,86
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 4 disponible(s)

Ajouter au panier

Image d'archives

Frank Nielsen
ISBN 10 : 3030779564 ISBN 13 : 9783030779566
Neuf Couverture rigide

Vendeur : Grand Eagle Retail, Fairfield, OH, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Hardcover. Etat : new. Hardcover. Machine learning and artificial intelligence increasingly use methodological tools rooted in statistical physics. Conversely, limitations and pitfalls encountered in AI question the very foundations of statistical physics. This interplay between AI and statistical physics has been attested since the birth of AI, and principles underpinning statistical physics can shed new light on the conceptual basis of AI. During the last fifty years, statistical physics has been investigated through new geometric structures allowing covariant formalization of the thermodynamics. Inference methods in machine learning have begun to adapt these new geometric structures to process data in more abstract representation spaces.This volume collects selected contributions on the interplay of statistical physics and artificial intelligence. The aim is to provide a constructive dialogue around a common foundation to allow the establishment of new principles and laws governing these two disciplines in a unified manner. The contributions were presented at the workshop on the Joint Structures and Common Foundation of Statistical Physics, Information Geometry and Inference for Learning which was held in Les Houches in July 2020. The various theoretical approaches are discussed in the context of potential applications in cognitive systems, machine learning, signal processing. Machine learning and artificial intelligence increasingly use methodological tools rooted in statistical physics. This interplay between AI and statistical physics has been attested since the birth of AI, and principles underpinning statistical physics can shed new light on the conceptual basis of AI. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9783030779566

Contacter le vendeur

Acheter neuf

EUR 334,55
Autre devise
Frais de port : EUR 65,48
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Edité par Springer, 2021
ISBN 10 : 3030779564 ISBN 13 : 9783030779566
Neuf Couverture rigide
impression à la demande

Vendeur : Majestic Books, Hounslow, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Print on Demand. N° de réf. du vendeur 391867955

Contacter le vendeur

Acheter neuf

EUR 397,51
Autre devise
Frais de port : EUR 10,49
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 4 disponible(s)

Ajouter au panier

Image d'archives

Edité par Springer, 2021
ISBN 10 : 3030779564 ISBN 13 : 9783030779566
Neuf Couverture rigide
impression à la demande

Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. PRINT ON DEMAND. N° de réf. du vendeur 18388813286

Contacter le vendeur

Acheter neuf

EUR 411,41
Autre devise
Frais de port : EUR 7,95
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 4 disponible(s)

Ajouter au panier

Image d'archives

Edité par Springer, 2021
ISBN 10 : 3030779564 ISBN 13 : 9783030779566
Neuf Couverture rigide

Vendeur : Mispah books, Redhill, SURRE, Royaume-Uni

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

hardcover. Etat : New. New. book. N° de réf. du vendeur ERICA80030307795646

Contacter le vendeur

Acheter neuf

EUR 398,11
Autre devise
Frais de port : EUR 29,64
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Barbaresco, Frédéric (Editor)/ Nielsen, Frank (Editor)
Edité par Springer Nature, 2021
ISBN 10 : 3030779564 ISBN 13 : 9783030779566
Neuf Couverture rigide

Vendeur : Revaluation Books, Exeter, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Hardcover. Etat : Brand New. 472 pages. 9.25x6.10x1.14 inches. In Stock. N° de réf. du vendeur x-3030779564

Contacter le vendeur

Acheter neuf

EUR 418,29
Autre devise
Frais de port : EUR 11,86
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier