Chapter 1: Preliminaries.- Chapter 2: A Definition for Hesitant Fuzzy Partitions.- Chapter 3: Unsupervised Feature Selection Method. Chapter 4: Fuzzy Partitioning of Continuous Attributes.- Chapter 5: Comparing Different Stopping Criteria.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
EUR 10 expédition depuis Allemagne vers France
Destinations, frais et délaisEUR 9,70 expédition depuis Allemagne vers France
Destinations, frais et délaisVendeur : Universitätsbuchhandlung Herta Hold GmbH, Berlin, Allemagne
1st ed. 2022. XII, 167 p. Hardcover. Einband bestoßen, daher Mängelexemplar gestempelt, sonst sehr guter Zustand. Imperfect copy due to slightly bumped cover, apart from this in very good condition. Stamped. Studies in Fuzziness and Soft Computing, 416. Sprache: Englisch. N° de réf. du vendeur 13245DB
Quantité disponible : 1 disponible(s)
Vendeur : moluna, Greven, Allemagne
Gebunden. Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Recent research on the application of fuzzy and hesitant fuzzy sets in machine learning tasksShows how fuzzy concepts can be used to solve multi-criteria decision making challenges raised in machine learningBrings closer the communities of. N° de réf. du vendeur 537437857
Quantité disponible : Plus de 20 disponibles
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9783030940652_new
Quantité disponible : Plus de 20 disponibles
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Buch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This book introduces somecontemporaryapproacheson the application offuzzy and hesitant fuzzy sets in machine learning tasks such asclassification, clustering and dimensionreduction.Manysituationsarisein machine learning algorithmsinwhichapplying methods for uncertaintymodeling andmulti-criteriadecision making can lead toabetterunderstanding ofalgorithms behavior as well as achievinggood performances.Specifically,the present book is a collection of novel viewpointson howfuzzy andhesitant fuzzy conceptscan beappliedtodata uncertainty modeling aswell asbeing used to solvemulti-criteria decisionmaking challengesraised in machine learning problems. Using the multi-criteria decisionmaking framework, the book shows how different algorithms, rather thanhuman experts,areemployedto determine membership degrees. The book is expected to bring closerthe communities of pure mathematicians of fuzzysets and data scientists. N° de réf. du vendeur 9783030940652
Quantité disponible : 1 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Buch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book introduces somecontemporaryapproacheson the application offuzzy and hesitant fuzzy sets in machine learning tasks such asclassification, clustering and dimensionreduction.Manysituationsarisein machine learning algorithmsinwhichapplying methods for uncertaintymodeling andmulti-criteriadecision making can lead toabetterunderstanding ofalgorithms behavior as well as achievinggood performances.Specifically,the present book is a collection of novel viewpointson howfuzzy andhesitant fuzzy conceptscan beappliedtodata uncertainty modeling aswell asbeing used to solvemulti-criteria decisionmaking challengesraised in machine learning problems. Using the multi-criteria decisionmaking framework, the book shows how different algorithms, rather thanhuman experts,areemployedto determine membership degrees. The book is expected to bring closerthe communities of pure mathematicians of fuzzysets and data scientists. 180 pp. Englisch. N° de réf. du vendeur 9783030940652
Quantité disponible : 2 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Buch. Etat : Neu. Neuware -This book introduces some contemporary approaches on the application of fuzzy and hesitant fuzzy sets in machine learning tasks such as classification, clustering and dimension reduction. Many situations arise in machine learning algorithms in which applying methods for uncertainty modeling and multi-criteria decision making can lead to a better understanding of algorithms behavior as well as achieving good performances. Specifically, the present book is a collection of novel viewpoints on how fuzzy and hesitant fuzzy concepts can be applied to data uncertainty modeling as well as being used to solve multi-criteria decision making challenges raised in machine learning problems. Using the multi-criteria decision making framework, the book shows how different algorithms, rather than human experts, are employed to determine membership degrees. The book is expected to bring closer the communities of pure mathematicians of fuzzy sets and data scientists.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 180 pp. Englisch. N° de réf. du vendeur 9783030940652
Quantité disponible : 2 disponible(s)
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLIING23Mar3113020033566
Quantité disponible : Plus de 20 disponibles
Vendeur : Best Price, Torrance, CA, Etats-Unis
Etat : New. SUPER FAST SHIPPING. N° de réf. du vendeur 9783030940652
Quantité disponible : 2 disponible(s)