This open-access textbook's significant contribution is the unified derivation of data-assimilation techniques from a common fundamental and optimal starting point, namely Bayes' theorem. Unique for this book is the "top-down" derivation of the assimilation methods. It starts from Bayes theorem and gradually introduces the assumptions and approximations needed to arrive at today's popular data-assimilation methods. This strategy is the opposite of most textbooks and reviews on data assimilation that typically take a bottom-up approach to derive a particular assimilation method. E.g., the derivation of the Kalman Filter from control theory and the derivation of the ensemble Kalman Filter as a low-rank approximation of the standard Kalman Filter. The bottom-up approach derives the assimilation methods from different mathematical principles, making it difficult to compare them. Thus, it is unclear which assumptions are made to derive an assimilation method and sometimes even which problem it aspires to solve. The book's top-down approach allows categorizing data-assimilation methods based on the approximations used. This approach enables the user to choose the most suitable method for a particular problem or application. Have you ever wondered about the difference between the ensemble 4DVar and the "ensemble randomized likelihood" (EnRML) methods? Do you know the differences between the ensemble smoother and the ensemble-Kalman smoother? Would you like to understand how a particle flow is related to a particle filter? In this book, we will provide clear answers to several such questions. The book provides the basis for an advanced course in data assimilation. It focuses on the unified derivation of the methods and illustrates their properties on multiple examples. It is suitable for graduate students, post-docs, scientists, and practitioners working in data assimilation.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Geir Evensen gained his PhD in Mathematics at the University of Bergen, Norway. His extensive experiences include data assimilation in ocean and weather models, as well as ensemble-based history matching within petroleum-reservoir models. He has initiated and led several international research projects from an initial idea to operational implementation in various disciplines. Since 2016, he has worked as a Chief scientist at the International Research Institute of Stavanger (IRIS), which from 2018, merged into NORCE. He teaches data assimilation and its applications in various courses and summer schools. He also holds a secondary position at the Nansen Environmental and Remote Sensing Center in Bergen, Norway.
Femke Vossepoel gained her PhD in Aerospace Engineering at Delft University of Technology, The Netherlands. Her research focuses on the use of data assimilation in numerical models of subsurface flow and mechanics to estimate the effects of subsurface activities and their uncertainties and associated risks. Applications of her current research include subsidence and induced seismicity, slope stability, and flooding risk. She works as an Associate Professor, Department of Geoscience and Engineering, Delft University of Technology, The Netherlands. She teaches on statistics and data assimilation in various international summer schools and courses.
Peter Jan van Leeuwen gained his PhD from the Delft University of Technology, The Netherlands. His research focuses on the development of advanced data-assimilation methods and causal discovery methods for high-dimensional highly nonlinear systems, and applying these methods for a better understanding of geophysical fluids, especially atmosphere and ocean. He joined the University of Reading, UK, as Professor in Data Assimilation in 2009, and is also a Professor in Data Assimilation and Oceanography at Colorado State University, USA, since 2018. In 2016 we won the prestigious Advanced Investigator grant from the European Research Council, the largest personal award in the EU. The teaches many courses at universities and summerschools on Data Assimilation, Causal Discovery, Physical Oceanography, Statistical mechanics for the Geosciences, and Remote Sensing.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 9,70 expédition depuis Allemagne vers France
Destinations, frais et délaisVendeur : moluna, Greven, Allemagne
Gebunden. Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Derives data-assimilation methods using a top-down approachPresents unified data-assimilation formulation Derivation applicable to both state- and parameter estimationProvides a deep understanding of data-assimilation methods and the. N° de réf. du vendeur 560621127
Quantité disponible : Plus de 20 disponibles
Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni
HRD. Etat : New. New Book. Shipped from UK. Established seller since 2000. N° de réf. du vendeur S0-9783030967086
Quantité disponible : 1 disponible(s)
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Buch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This open-access textbook's significant contribution is the unified derivation of data-assimilation techniques from a common fundamental and optimal starting point, namely Bayes' theorem. Unique for this book is the 'top-down' derivation of the assimilation methods. It starts from Bayes theorem and gradually introduces the assumptions and approximations needed to arrive at today's popular data-assimilation methods. This strategy is the opposite of most textbooks and reviews on data assimilation that typically take a bottom-up approach to derive a particular assimilation method. E.g., the derivation of the Kalman Filter from control theory and the derivation of the ensemble Kalman Filter as a low-rank approximation of the standard Kalman Filter. The bottom-up approach derives the assimilation methods from different mathematical principles, making it difficult to compare them. Thus, it is unclear which assumptions are made to derive an assimilation method and sometimes even which problem it aspires to solve.The book'stop-down approach allows categorizing data-assimilation methods based on the approximations used. This approach enables the user to choose the most suitable method for a particular problem or application. Have you ever wondered about the difference between the ensemble 4DVar and the 'ensemble randomized likelihood' (EnRML) methods Do you know the differences between the ensemble smoother and the ensemble-Kalman smoother Would you like to understand how a particle flow is related to a particle filter In this book, we will provide clear answers to several such questions.The book provides the basis for an advanced course in data assimilation. It focuses on the unified derivation of the methods and illustrates their properties on multiple examples.It is suitable for graduate students, post-docs, scientists, and practitioners working in data assimilation. N° de réf. du vendeur 9783030967086
Quantité disponible : 1 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Buch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This open-access textbook's significant contribution is the unified derivation of data-assimilation techniques from a common fundamental and optimal starting point, namely Bayes' theorem. Unique for this book is the 'top-down' derivation of the assimilation methods. It starts from Bayes theorem and gradually introduces the assumptions and approximations needed to arrive at today's popular data-assimilation methods. This strategy is the opposite of most textbooks and reviews on data assimilation that typically take a bottom-up approach to derive a particular assimilation method. E.g., the derivation of the Kalman Filter from control theory and the derivation of the ensemble Kalman Filter as a low-rank approximation of the standard Kalman Filter. The bottom-up approach derives the assimilation methods from different mathematical principles, making it difficult to compare them. Thus, it is unclear which assumptions are made to derive an assimilation method and sometimes even which problem it aspires to solve.The book'stop-down approach allows categorizing data-assimilation methods based on the approximations used. This approach enables the user to choose the most suitable method for a particular problem or application. Have you ever wondered about the difference between the ensemble 4DVar and the 'ensemble randomized likelihood' (EnRML) methods Do you know the differences between the ensemble smoother and the ensemble-Kalman smoother Would you like to understand how a particle flow is related to a particle filter In this book, we will provide clear answers to several such questions.The book provides the basis for an advanced course in data assimilation. It focuses on the unified derivation of the methods and illustrates their properties on multiple examples.It is suitable for graduate students, post-docs, scientists, and practitioners working in data assimilation. 268 pp. Englisch. N° de réf. du vendeur 9783030967086
Quantité disponible : 1 disponible(s)
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Hardcover. Etat : Brand New. 264 pages. 9.25x6.10x0.75 inches. In Stock. N° de réf. du vendeur __3030967085
Quantité disponible : 1 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Buch. Etat : Neu. Neuware -This open-access textbook's significant contribution is the unified derivation of data-assimilation techniques from a common fundamental and optimal starting point, namely Bayes' theorem. Unique for this book is the 'top-down' derivation of the assimilation methods. It starts from Bayes theorem and gradually introduces the assumptions and approximations needed to arrive at today's popular data-assimilation methods. This strategy is the opposite of most textbooks and reviews on data assimilation that typically take a bottom-up approach to derive a particular assimilation method. E.g., the derivation of the Kalman Filter from control theory and the derivation of the ensemble Kalman Filter as a low-rank approximation of the standard Kalman Filter. The bottom-up approach derives the assimilation methods from different mathematical principles, making it difficult to compare them. Thus, it is unclear which assumptions are made to derive an assimilation method and sometimes even which problem it aspires to solve. The book's top-down approach allows categorizing data-assimilation methods based on the approximations used. This approach enables the user to choose the most suitable method for a particular problem or application. Have you ever wondered about the difference between the ensemble 4DVar and the 'ensemble randomized likelihood' (EnRML) methods Do you know the differences between the ensemble smoother and the ensemble-Kalman smoother Would you like to understand how a particle flow is related to a particle filter In this book, we will provide clear answers to several such questions. The book provides the basis for an advanced course in data assimilation. It focuses on the unified derivation of the methods and illustrates their properties on multiple examples. It is suitable for graduate students, post-docs, scientists, and practitioners working in data assimilation.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 268 pp. Englisch. N° de réf. du vendeur 9783030967086
Quantité disponible : 2 disponible(s)
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. N° de réf. du vendeur 26395751111
Quantité disponible : 4 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. Print on Demand. N° de réf. du vendeur 400625944
Quantité disponible : 4 disponible(s)
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. PRINT ON DEMAND. N° de réf. du vendeur 18395751117
Quantité disponible : 4 disponible(s)