The next generation of autonomous vehicles will provide major improvements in traffic flow, fuel efficiency, and vehicle safety. Several challenges currently prevent the deployment of autonomous vehicles, one aspect of which is robust and adaptable vehicle control. Designing a controller for autonomous vehicles capable of providing adequate performance in all driving scenarios is challenging due to the highly complex environment and inability to test the system in the wide variety of scenarios which it may encounter after deployment. However, deep learning methods have shown great promise in not only providing excellent performance for complex and non-linear control problems, but also in generalizing previously learned rules to new scenarios. For these reasons, the use of deep neural networks for vehicle control has gained significant interest.
In this book, we introduce relevant deep learning techniques, discuss recent algorithms applied to autonomous vehicle control, identify strengths and limitations of available methods, discuss research challenges in the field, and provide insights into the future trends in this rapidly evolving field.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Sampo Kuutti received his MEng degree in mechanical engineering in 2017 from University of Surrey, Guildford, U.K., where he is currently pursuing a Ph.D. in automotive engineering with the Connected Autonomous Vehicles Lab within the Centre for Automotive Engineering. His research interests include deep learning applied to autonomous vehicles, functional safety validation, and safety and interpretability in machine learning systems.Saber Fallah is a Senior Lecturer (Associate Professor) in Vehicle and Mechatronic Systems at the University of Surrey and the Director of Connected Autonomous Vehicle Lab (CAVLAB) within the Centre for Automotive Engineering, where he leads several research activities funded by the UK and European governments (e.g., EPSRC, Innovate UK, H2020) in collaboration with major companies active in autonomous vehicle technologies. His research interests include reinforced deep learning, advanced control, optimization, and estimation and their applications to connected autonomous vehicles.Richard Bowden is Professor of computer vision and machine learning at the University of Surrey where he leads the Cognitive Vision Group within the Centre for Vision, Speech and Signal Processing. His research centers on the use of computer vision to locate, track, and understand humans. He is anassociate editor for the journals Image and Vision Computing and IEEE TPAMI. In 2013 he was awarded a Royal Society Leverhulme Trust Senior Research Fellowship and is a fellow of the Higher Education Academy, a senior member of the IEEE, and a Fellow of the International Association of Pattern Recognition (IAPR).Phil Barber was formerly Principal Technical Specialist in Capability Research at Jaguar Land Rover. For over 30 years in the automotive industry he has witnessed the introduction of computer controlled by-wire technology and been part of the debate over the safety issues involved in the implementation of real-time vehicle control.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLIING23Mar3113020034741
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 44570970-n
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 44570970
Quantité disponible : Plus de 20 disponibles
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. 1st edition NO-PA16APR2015-KAP. N° de réf. du vendeur 26394734946
Quantité disponible : 4 disponible(s)
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In English. N° de réf. du vendeur ria9783031003745_new
Quantité disponible : Plus de 20 disponibles
Vendeur : Chiron Media, Wallingford, Royaume-Uni
PF. Etat : New. N° de réf. du vendeur 6666-IUK-9783031003745
Quantité disponible : 10 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. Print on Demand. N° de réf. du vendeur 401642173
Quantité disponible : 4 disponible(s)
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : New. N° de réf. du vendeur 44570970-n
Quantité disponible : Plus de 20 disponibles
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. PRINT ON DEMAND. N° de réf. du vendeur 18394734952
Quantité disponible : 4 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The next generation of autonomous vehicles will provide major improvements in traffic flow, fuel efficiency, and vehicle safety. Several challenges currently prevent the deployment of autonomous vehicles, one aspect of which is robust and adaptable vehicle control. Designing a controller for autonomous vehicles capable of providing adequate performance in all driving scenarios is challenging due to the highly complex environment and inability to test the system in the wide variety of scenarios which it may encounter after deployment. However, deep learning methods have shown great promise in not only providing excellent performance for complex and non-linear control problems, but also in generalizing previously learned rules to new scenarios. For these reasons, the use of deep neural networks for vehicle control has gained significant interest.In this book, we introduce relevant deep learning techniques, discuss recent algorithms applied to autonomous vehicle control, identify strengths and limitations of available methods, discuss research challenges in the field, and provide insights into the future trends in this rapidly evolving field. 84 pp. Englisch. N° de réf. du vendeur 9783031003745
Quantité disponible : 2 disponible(s)