Articles liés à Representation Discovery using Harmonic Analysis

Representation Discovery using Harmonic Analysis - Couverture souple

 
9783031004186: Representation Discovery using Harmonic Analysis

Synopsis

Representations are at the heart of artificial intelligence (AI). This book is devoted to the problem of representation discovery: how can an intelligent system construct representations from its experience? Representation discovery re-parameterizes the state space - prior to the application of information retrieval, machine learning, or optimization techniques - facilitating later inference processes by constructing new task-specific bases adapted to the state space geometry. This book presents a general approach to representation discovery using the framework of harmonic analysis, in particular Fourier and wavelet analysis. Biometric compression methods, the compact disc, the computerized axial tomography (CAT) scanner in medicine, JPEG compression, and spectral analysis of time-series data are among the many applications of classical Fourier and wavelet analysis. A central goal of this book is to show that these analytical tools can be generalized from their usual setting in (infinite-dimensional) Euclidean spaces to discrete (finite-dimensional) spaces typically studied in many subfields of AI. Generalizing harmonic analysis to discrete spaces poses many challenges: a discrete representation of the space must be adaptively acquired; basis functions are not pre-defined, but rather must be constructed. Algorithms for efficiently computing and representing bases require dealing with the curse of dimensionality. However, the benefits can outweigh the costs, since the extracted basis functions outperform parametric bases as they often reflect the irregular shape of a particular state space. Case studies from computer graphics, information retrieval, machine learning, and state space planning are used to illustrate the benefits of the proposed framework, and the challenges that remain to be addressed. Representation discovery is an actively developing field, and the author hopes this book will encourage other researchers to explore this exciting area of research. Table of Contents: Overview / Vector Spaces / Fourier Bases on Graphs / Multiscale Bases on Graphs / Scaling to Large Spaces / Case Study: State-Space Planning / Case Study: Computer Graphics / Case Study: Natural Language / Future Directions

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

À propos de l?auteur

Dr. Sridhar Mahadevan is an Associate Professor in the Department of Computer Science at the University of Massachusetts, Amherst. He received his PhD from Rutgers University in 1990. Professor Mahadevan's research interests span several subfields of artificial intelligence and computer science, including machine learning, multi-agent systems, planning, perception, and robotics. His PhD thesis introduced the learning apprentice model of knowledge acquisition from experts, as well as a rigorous study of concept learning with prior determination knowledge using the framework of Probably Approximately Correct (PAC) learning. In 1993, he co-edited (with Jonathan Connell) the book Robot Learning published by Kluwer Academic Press, one of the first books on the application of machine learning to robotics. Over the past decade, his research has centered around Markov decision processes and reinforcement learning, where his papers are among the most cited in the field. His recent work on spectral and wavelet methods for Markov decision processes has generated much attention, leading to a unified framework for learning representation and behavior. Professor Mahadevan is an Associate Editor for the Journal of Machine Learning Research. Previously, he served for many years as an Associate Editor for Journal of AI Research and the Machine Learning Journal. He has been on numerous program committees for AAAI, ICML, IJCAI, NIPS, ICRA, and IROS conferences, including area chair for at AAAI, ICML, and NIPS conferences. In 2001, he co-authored a paper with his students Rajbala Makar and Mohammad Ghavamzadeh that received the best student paper award in the 5th International Conference on Autonomous Agents. In 1999, he co-authored a paper with Gang Wang that received the best paper award (runner-up) at the 16th International Conference on Machine Learning. He was an invited tutorial speaker at ICML 2006, IJCAI 2007, and AAAI 2007.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Acheter D'occasion

état :  Comme neuf
Unread book in perfect condition...
Afficher cet article
EUR 32,53

Autre devise

EUR 2,28 expédition vers Etats-Unis

Destinations, frais et délais

Acheter neuf

Afficher cet article
EUR 32,51

Autre devise

EUR 4,78 expédition depuis Royaume-Uni vers Etats-Unis

Destinations, frais et délais

Autres éditions populaires du même titre

9781598296594: Representation Discovery using Harmonic Analysis

Edition présentée

ISBN 10 :  1598296590 ISBN 13 :  9781598296594
Editeur : Morgan and Claypool Publishers, 2008
Couverture souple

Résultats de recherche pour Representation Discovery using Harmonic Analysis

Image fournie par le vendeur

Lopez, Sridhar
Edité par Springer, 2008
ISBN 10 : 3031004183 ISBN 13 : 9783031004186
Ancien ou d'occasion Couverture souple

Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 44569059

Contacter le vendeur

Acheter D'occasion

EUR 32,53
Autre devise
Frais de port : EUR 2,28
Vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Sridhar Mahadevan
Edité par Springer, 2008
ISBN 10 : 3031004183 ISBN 13 : 9783031004186
Neuf PAP

Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

PAP. Etat : New. New Book. Shipped from UK. Established seller since 2000. N° de réf. du vendeur GB-9783031004186

Contacter le vendeur

Acheter neuf

EUR 32,51
Autre devise
Frais de port : EUR 4,78
De Royaume-Uni vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Lopez, Sridhar
Edité par Springer, 2008
ISBN 10 : 3031004183 ISBN 13 : 9783031004186
Neuf Couverture souple

Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 44569059-n

Contacter le vendeur

Acheter neuf

EUR 36,14
Autre devise
Frais de port : EUR 2,28
Vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Sridhar Mahadevan
ISBN 10 : 3031004183 ISBN 13 : 9783031004186
Neuf Paperback

Vendeur : Rarewaves.com USA, London, LONDO, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : New. 1°. Representations are at the heart of artificial intelligence (AI). This book is devoted to the problem of representation discovery: how can an intelligent system construct representations from its experience? Representation discovery re-parameterizes the state space - prior to the application of information retrieval, machine learning, or optimization techniques - facilitating later inference processes by constructing new task-specific bases adapted to the state space geometry. This book presents a general approach to representation discovery using the framework of harmonic analysis, in particular Fourier and wavelet analysis. Biometric compression methods, the compact disc, the computerized axial tomography (CAT) scanner in medicine, JPEG compression, and spectral analysis of time-series data are among the many applications of classical Fourier and wavelet analysis. A central goal of this book is to show that these analytical tools can be generalized from their usual setting in (infinite-dimensional) Euclidean spaces to discrete (finite-dimensional) spaces typically studied in many subfields of AI. Generalizing harmonic analysis to discrete spaces poses many challenges: a discrete representation of the space must be adaptively acquired; basis functions are not pre-defined, but rather must be constructed. Algorithms for efficiently computing and representing bases require dealing with the curse of dimensionality. However, the benefits can outweigh the costs, since the extracted basis functions outperform parametric bases as they often reflect the irregular shape of a particular state space. Case studies from computer graphics, information retrieval, machine learning, and state space planning are used to illustrate the benefits of the proposed framework, and the challenges that remain to be addressed. Representation discovery is an actively developing field, and the author hopes this book will encourage other researchers to explore this exciting area of research. Table of Contents: Overview / Vector Spaces / Fourier Bases on Graphs / Multiscale Bases on Graphs / Scaling to Large Spaces / Case Study: State-Space Planning / Case Study: Computer Graphics / Case Study: Natural Language / Future Directions. N° de réf. du vendeur LU-9783031004186

Contacter le vendeur

Acheter neuf

EUR 41,65
Autre devise
Frais de port : Gratuit
De Royaume-Uni vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Sridhar Mahadevan
ISBN 10 : 3031004183 ISBN 13 : 9783031004186
Neuf Paperback

Vendeur : Grand Eagle Retail, Bensenville, IL, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : new. Paperback. Representations are at the heart of artificial intelligence (AI). This book is devoted to the problem of representation discovery: how can an intelligent system construct representations from its experience? Representation discovery re-parameterizes the state space - prior to the application of information retrieval, machine learning, or optimization techniques - facilitating later inference processes by constructing new task-specific bases adapted to the state space geometry. This book presents a general approach to representation discovery using the framework of harmonic analysis, in particular Fourier and wavelet analysis. Biometric compression methods, the compact disc, the computerized axial tomography (CAT) scanner in medicine, JPEG compression, and spectral analysis of time-series data are among the many applications of classical Fourier and wavelet analysis. A central goal of this book is to show that these analytical tools can be generalized from their usual setting in (infinite-dimensional) Euclidean spaces to discrete (finite-dimensional) spaces typically studied in many subfields of AI. Generalizing harmonic analysis to discrete spaces poses many challenges: a discrete representation of the space must be adaptively acquired; basis functions are not pre-defined, but rather must be constructed. Algorithms for efficiently computing and representing bases require dealing with the curse of dimensionality. However, the benefits can outweigh the costs, since the extracted basis functions outperform parametric bases as they often reflect the irregular shape of a particular state space. Case studies from computer graphics, information retrieval, machine learning, and state space planning are used to illustrate the benefits of the proposed framework, and the challenges that remain to be addressed. Representation discovery is an actively developing field, and the author hopes this book will encourage other researchers to explore this exciting area of research. Table of Contents: Overview / Vector Spaces / Fourier Bases on Graphs / Multiscale Bases on Graphs / Scaling to Large Spaces / Case Study: State-Space Planning / Case Study: Computer Graphics / Case Study: Natural Language / Future Directions Table of Contents: Overview / Vector Spaces / Fourier Bases on Graphs / Multiscale Bases on Graphs / Scaling to Large Spaces / Case Study: State-Space Planning / Case Study: Computer Graphics / Case Study: Natural Language / Future Directions Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9783031004186

Contacter le vendeur

Acheter neuf

EUR 44,38
Autre devise
Frais de port : Gratuit
Vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Mahadevan, Sridhar
Edité par Springer, 2008
ISBN 10 : 3031004183 ISBN 13 : 9783031004186
Neuf Couverture souple

Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. In English. N° de réf. du vendeur ria9783031004186_new

Contacter le vendeur

Acheter neuf

EUR 33,90
Autre devise
Frais de port : EUR 13,77
De Royaume-Uni vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Lopez, Sridhar
Edité par Springer, 2008
ISBN 10 : 3031004183 ISBN 13 : 9783031004186
Neuf Couverture souple

Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 44569059-n

Contacter le vendeur

Acheter neuf

EUR 32,49
Autre devise
Frais de port : EUR 17,24
De Royaume-Uni vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Lopez, Sridhar
Edité par Springer, 2008
ISBN 10 : 3031004183 ISBN 13 : 9783031004186
Ancien ou d'occasion Couverture souple

Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 44569059

Contacter le vendeur

Acheter D'occasion

EUR 35,53
Autre devise
Frais de port : EUR 17,24
De Royaume-Uni vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Mahadevan, Sridhar
Edité par Springer, 2008
ISBN 10 : 3031004183 ISBN 13 : 9783031004186
Neuf Couverture souple

Vendeur : Books Puddle, New York, NY, Etats-Unis

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. 1st edition NO-PA16APR2015-KAP. N° de réf. du vendeur 26395061448

Contacter le vendeur

Acheter neuf

EUR 49,41
Autre devise
Frais de port : EUR 3,44
Vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 4 disponible(s)

Ajouter au panier

Image d'archives

Mahadevan, Sridhar
Edité par Springer 2008-07, 2008
ISBN 10 : 3031004183 ISBN 13 : 9783031004186
Neuf PF

Vendeur : Chiron Media, Wallingford, Royaume-Uni

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

PF. Etat : New. N° de réf. du vendeur 6666-IUK-9783031004186

Contacter le vendeur

Acheter neuf

EUR 35,45
Autre devise
Frais de port : EUR 17,80
De Royaume-Uni vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 10 disponible(s)

Ajouter au panier

There are 10 autres exemplaires de ce livre sont disponibles

Afficher tous les résultats pour ce livre