Articles liés à Introduction to Semi-Supervised Learning

Introduction to Semi-Supervised Learning - Couverture souple

 
9783031004209: Introduction to Semi-Supervised Learning

Synopsis

Semi-supervised learning is a learning paradigm concerned with the study of how computers and natural systems such as humans learn in the presence of both labeled and unlabeled data. Traditionally, learning has been studied either in the unsupervised paradigm (e.g., clustering, outlier detection) where all the data are unlabeled, or in the supervised paradigm (e.g., classification, regression) where all the data are labeled. The goal of semi-supervised learning is to understand how combining labeled and unlabeled data may change the learning behavior, and design algorithms that take advantage of such a combination. Semi-supervised learning is of great interest in machine learning and data mining because it can use readily available unlabeled data to improve supervised learning tasks when the labeled data are scarce or expensive. Semi-supervised learning also shows potential as a quantitative tool to understand human category learning, where most of the input is self-evidently unlabeled. In this introductory book, we present some popular semi-supervised learning models, including self-training, mixture models, co-training and multiview learning, graph-based methods, and semi-supervised support vector machines. For each model, we discuss its basic mathematical formulation. The success of semi-supervised learning depends critically on some underlying assumptions. We emphasize the assumptions made by each model and give counterexamples when appropriate to demonstrate the limitations of the different models. In addition, we discuss semi-supervised learning for cognitive psychology. Finally, we give a computational learning theoretic perspective on semi-supervised learning, and we conclude the book with a brief discussion of open questions in the field. Table of Contents: Introduction to Statistical Machine Learning / Overview of Semi-Supervised Learning / Mixture Models and EM / Co-Training / Graph-Based Semi-Supervised Learning / Semi-Supervised Support Vector Machines/ Human Semi-Supervised Learning / Theory and Outlook

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

À propos de l?auteur

Xiaojin Zhu is an assistant professor in the Computer Sciences department at the University of Wisconsin-Madison. His research interests include statistical machine learning and its applications in cognitive psychology, natural language processing, and programming languages. Xiaojin received his Ph.D. from the Language Technologies Institute at Carnegie Mellon University in 2005. He worked on Mandarin speech recognition as a research staff member at IBM China Research Laboratory in 1996-1998. He received M.S. and B.S. in computer science from Shanghai Jiao Tong University in 1996 and 1993, respectively. His other interests include astronomy and geology. Andrew B.Goldberg is a Ph.D. candidate in the Computer Sciences department at the University of Wisconsin-Madison. His research interests lie in statistical machine learning (in particular, semi-supervised learning) and natural language processing. He has served on the program committee for national and international conferences including AAAI, ACL, EMNLP, and NAACL-HLT. Andrew was the recipient of a UW-Madison First-Year Graduate School Fellowship for 2005-2006 and a Yahoo! Key Technical Challenges Grant for 2008-2009. Before his graduate studies, Andrew received a B.A. in computer science from Amherst College, where he graduated magna cum laude with departmental distinction in 2003. He then spent two years writing, editing, and developing teaching materials for introductory computer science and Web programming textbooks at Deitel and Associates. During this time, he contributed to several Deitel books and co-authored the 3rd edition of Internet & World Wide Web How to Program. In 2005, Andrew entered graduate school at UW-Madison and, in 2006 received his M.S. in computer science. In his free time, Andrew enjoys live music, cooking, photography, and travel.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

  • ÉditeurSpringer
  • Date d'édition2009
  • ISBN 10 3031004205
  • ISBN 13 9783031004209
  • ReliureBroché
  • Langueanglais
  • Nombre de pages132
  • Coordonnées du fabricantnon disponible

Acheter neuf

Afficher cet article
EUR 33,69

Autre devise

EUR 9,70 expédition depuis Allemagne vers France

Destinations, frais et délais

Autres éditions populaires du même titre

9781598295474: Introduction to Semi-Supervised Learning

Edition présentée

ISBN 10 :  1598295470 ISBN 13 :  9781598295474
Editeur : Morgan and Claypool Publishers, 2009
Couverture souple

Résultats de recherche pour Introduction to Semi-Supervised Learning

Image fournie par le vendeur

Zhu, Xiaojin|Goldberg, Andrew. B
ISBN 10 : 3031004205 ISBN 13 : 9783031004209
Neuf Couverture souple
impression à la demande

Vendeur : moluna, Greven, Allemagne

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Semi-supervised learning is a learning paradigm concerned with the study of how computers and natural systems such as humans learn in the presence of both labeled and unlabeled data. Traditionally, learning has been studied either in the unsupervised paradi. N° de réf. du vendeur 608128849

Contacter le vendeur

Acheter neuf

EUR 33,69
Autre devise
Frais de port : EUR 9,70
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Zhu, Xiaojin; Goldberg, Andrew. B
Edité par Springer, 2009
ISBN 10 : 3031004205 ISBN 13 : 9783031004209
Neuf Couverture souple

Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. In English. N° de réf. du vendeur ria9783031004209_new

Contacter le vendeur

Acheter neuf

EUR 40,68
Autre devise
Frais de port : EUR 4,76
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

ZHU, XIAOJIN
Edité par Springer, 2009
ISBN 10 : 3031004205 ISBN 13 : 9783031004209
Neuf Couverture souple

Vendeur : Speedyhen, London, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : NEW. N° de réf. du vendeur NW9783031004209

Contacter le vendeur

Acheter neuf

EUR 38,51
Autre devise
Frais de port : EUR 7,14
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Andrew. B Goldberg
ISBN 10 : 3031004205 ISBN 13 : 9783031004209
Neuf Taschenbuch

Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - Semi-supervised learning is a learning paradigm concerned with the study of how computers and natural systems such as humans learn in the presence of both labeled and unlabeled data. Traditionally, learning has been studied either in the unsupervised paradigm (e.g., clustering, outlier detection) where all the data are unlabeled, or in the supervised paradigm (e.g., classification, regression) where all the data are labeled. The goal of semi-supervised learning is to understand how combining labeled and unlabeled data may change the learning behavior, and design algorithms that take advantage of such a combination. Semi-supervised learning is of great interest in machine learning and data mining because it can use readily available unlabeled data to improve supervised learning tasks when the labeled data are scarce or expensive. Semi-supervised learning also shows potential as a quantitative tool to understand human category learning, where most of the input is self-evidently unlabeled. In this introductory book, we present some popular semi-supervised learning models, including self-training, mixture models, co-training and multiview learning, graph-based methods, and semi-supervised support vector machines. For each model, we discuss its basic mathematical formulation. The success of semi-supervised learning depends critically on some underlying assumptions. We emphasize the assumptions made by each model and give counterexamples when appropriate to demonstrate the limitations of the different models. In addition, we discuss semi-supervised learning for cognitive psychology. Finally, we give a computational learning theoretic perspective on semi-supervised learning, and we conclude the book with a brief discussion of open questions in the field. Table of Contents: Introduction to Statistical Machine Learning / Overview of Semi-Supervised Learning / Mixture Models and EM / Co-Training / Graph-Based Semi-Supervised Learning / Semi-Supervised Support Vector Machines/ Human Semi-Supervised Learning / Theory and Outlook. N° de réf. du vendeur 9783031004209

Contacter le vendeur

Acheter neuf

EUR 35,30
Autre devise
Frais de port : EUR 10,99
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Andrew. B Goldberg
ISBN 10 : 3031004205 ISBN 13 : 9783031004209
Neuf Taschenbuch
impression à la demande

Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Semi-supervised learning is a learning paradigm concerned with the study of how computers and natural systems such as humans learn in the presence of both labeled and unlabeled data. Traditionally, learning has been studied either in the unsupervised paradigm (e.g., clustering, outlier detection) where all the data are unlabeled, or in the supervised paradigm (e.g., classification, regression) where all the data are labeled. The goal of semi-supervised learning is to understand how combining labeled and unlabeled data may change the learning behavior, and design algorithms that take advantage of such a combination. Semi-supervised learning is of great interest in machine learning and data mining because it can use readily available unlabeled data to improve supervised learning tasks when the labeled data are scarce or expensive. Semi-supervised learning also shows potential as a quantitative tool to understand human category learning, where most of the input is self-evidently unlabeled. In this introductory book, we present some popular semi-supervised learning models, including self-training, mixture models, co-training and multiview learning, graph-based methods, and semi-supervised support vector machines. For each model, we discuss its basic mathematical formulation. The success of semi-supervised learning depends critically on some underlying assumptions. We emphasize the assumptions made by each model and give counterexamples when appropriate to demonstrate the limitations of the different models. In addition, we discuss semi-supervised learning for cognitive psychology. Finally, we give a computational learning theoretic perspective on semi-supervised learning, and we conclude the book with a brief discussion of open questions in the field. Table of Contents: Introduction to Statistical Machine Learning / Overview of Semi-Supervised Learning / Mixture Models and EM / Co-Training / Graph-Based Semi-Supervised Learning / Semi-Supervised Support Vector Machines / Human Semi-Supervised Learning / Theory and Outlook 132 pp. Englisch. N° de réf. du vendeur 9783031004209

Contacter le vendeur

Acheter neuf

EUR 35,30
Autre devise
Frais de port : EUR 11
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Zhu, Xiaojin
Edité par Springer 6/8/2009, 2009
ISBN 10 : 3031004205 ISBN 13 : 9783031004209
Neuf Paperback or Softback

Vendeur : BargainBookStores, Grand Rapids, MI, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback or Softback. Etat : New. Introduction to Semi-Supervised Learning 0.53. Book. N° de réf. du vendeur BBS-9783031004209

Contacter le vendeur

Acheter neuf

EUR 40,59
Autre devise
Frais de port : EUR 11,03
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 5 disponible(s)

Ajouter au panier

Image d'archives

Zhu, Xiaojin; Goldberg, Andrew. B
Edité par Springer, 2009
ISBN 10 : 3031004205 ISBN 13 : 9783031004209
Neuf Couverture souple

Vendeur : Books Puddle, New York, NY, Etats-Unis

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. 1st edition NO-PA16APR2015-KAP. N° de réf. du vendeur 26395061454

Contacter le vendeur

Acheter neuf

EUR 50,59
Autre devise
Frais de port : EUR 7,94
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 4 disponible(s)

Ajouter au panier

Image d'archives

Zhu, Xiaojin; Goldberg, Andrew. B
Edité par Springer, 2009
ISBN 10 : 3031004205 ISBN 13 : 9783031004209
Neuf Couverture souple
impression à la demande

Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. PRINT ON DEMAND. N° de réf. du vendeur 18395061444

Contacter le vendeur

Acheter neuf

EUR 52,33
Autre devise
Frais de port : EUR 7,95
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 4 disponible(s)

Ajouter au panier

Image d'archives

Zhu, Xiaojin; Goldberg, Andrew. B
Edité par Springer, 2009
ISBN 10 : 3031004205 ISBN 13 : 9783031004209
Neuf Couverture souple
impression à la demande

Vendeur : Majestic Books, Hounslow, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Print on Demand. N° de réf. du vendeur 402364177

Contacter le vendeur

Acheter neuf

EUR 50,77
Autre devise
Frais de port : EUR 10,55
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 4 disponible(s)

Ajouter au panier