Articles liés à Statistical Language Models for Information Retrieval

Statistical Language Models for Information Retrieval - Couverture souple

 
9783031010026: Statistical Language Models for Information Retrieval

Synopsis

As online information grows dramatically, search engines such as Google are playing a more and more important role in our lives. Critical to all search engines is the problem of designing an effective retrieval model that can rank documents accurately for a given query. This has been a central research problem in information retrieval for several decades. In the past ten years, a new generation of retrieval models, often referred to as statistical language models, has been successfully applied to solve many different information retrieval problems. Compared with the traditional models such as the vector space model, these new models have a more sound statistical foundation and can leverage statistical estimation to optimize retrieval parameters. They can also be more easily adapted to model non-traditional and complex retrieval problems. Empirically, they tend to achieve comparable or better performance than a traditional model with less effort on parameter tuning. This book systematically reviews the large body of literature on applying statistical language models to information retrieval with an emphasis on the underlying principles, empirically effective language models, and language models developed for non-traditional retrieval tasks. All the relevant literature has been synthesized to make it easy for a reader to digest the research progress achieved so far and see the frontier of research in this area. The book also offers practitioners an informative introduction to a set of practically useful language models that can effectively solve a variety of retrieval problems. No prior knowledge about information retrieval is required, but some basic knowledge about probability and statistics would be useful for fully digesting all the details. Table of Contents: Introduction / Overview of Information Retrieval Models / Simple Query Likelihood Retrieval Model / Complex Query Likelihood Model / Probabilistic Distance Retrieval Model / Language Models for Special Retrieval Tasks / Language Models for Latent Topic Analysis / Conclusions

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

À propos de l?auteur

ChengXiang Zhai is a Professor of Computer Science and Willett Faculty Scholar at the University of Illinois at Urbana-Champaign, where he is also affiliated with the Graduate School of Library and Information Science, Institute for Genomic Biology, and Department of Statistics. He received a Ph.D. in Computer Science from Nanjing University in 1990, and a Ph.D. in Language and Information Technologies from Carnegie Mellon University in 2002. He worked at Clairvoyance Corp. as a Research Scientist and then Senior Research Scientist from 1997 to 2000. His research interests include information retrieval, text mining, natural language processing, machine learning, biomedical and health informatics, and intelligent education information systems. He has published over 200 research papers in major conferences and journals. He is an Associate Editor for Information Processing and Management and previously served as an Associate Editor of ACM Transactions on Information Systems, and on the editorial board of Information Retrieval Journal. He is a conference program co-chair of ACM CIKM 2004, NAACL HLT 2007, ACM SIGIR 2009, ECIR 2014, ICTIR 2015, and WWW 2015, and conference general co-chair for ACM CIKM 2016. He is an ACM Distinguished Scientist and a recipient of multiple awards, including the ACM SIGIR 2004 Best Paper Award, the ACM SIGIR 2014 Test of Time Paper Award, Alfred P. Sloan Research Fellowship, IBM Faculty Award, HP Innovation Research Program Award, Microsoft Beyond Search Research Award, and the Presidential Early Career Award for Scientists and Engineers (PECASE).

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Acheter neuf

Afficher cet article
EUR 32,69

Autre devise

EUR 9,70 expédition depuis Allemagne vers France

Destinations, frais et délais

Autres éditions populaires du même titre

9781598295900: Statistical Language Models for Information Retrieval

Edition présentée

ISBN 10 :  159829590X ISBN 13 :  9781598295900
Editeur : Morgan and Claypool Publishers, 2008
Couverture souple

Résultats de recherche pour Statistical Language Models for Information Retrieval

Image fournie par le vendeur

Zhai, ChengXiang
ISBN 10 : 3031010027 ISBN 13 : 9783031010026
Neuf Couverture souple
impression à la demande

Vendeur : moluna, Greven, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. As online information grows dramatically, search engines such as Google are playing a more and more important role in our lives. Critical to all search engines is the problem of designing an effective retrieval model that can rank documents accurately for a. N° de réf. du vendeur 608129255

Contacter le vendeur

Acheter neuf

EUR 32,69
Autre devise
Frais de port : EUR 9,70
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Zhai, Chengxiang
Edité par Springer, 2008
ISBN 10 : 3031010027 ISBN 13 : 9783031010026
Neuf Couverture souple

Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. In. N° de réf. du vendeur ria9783031010026_new

Contacter le vendeur

Acheter neuf

EUR 39,53
Autre devise
Frais de port : EUR 4,62
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Chengxiang Zhai
ISBN 10 : 3031010027 ISBN 13 : 9783031010026
Neuf Taschenbuch

Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - As online information grows dramatically, search engines such as Google are playing a more and more important role in our lives. Critical to all search engines is the problem of designing an effective retrieval model that can rank documents accurately for a given query. This has been a central research problem in information retrieval for several decades. In the past ten years, a new generation of retrieval models, often referred to as statistical language models, has been successfully applied to solve many different information retrieval problems. Compared with the traditional models such as the vector space model, these new models have a more sound statistical foundation and can leverage statistical estimation to optimize retrieval parameters. They can also be more easily adapted to model non-traditional and complex retrieval problems. Empirically, they tend to achieve comparable or better performance than a traditional model with less effort on parameter tuning. This book systematically reviews the large body of literature on applying statistical language models to information retrieval with an emphasis on the underlying principles, empirically effective language models, and language models developed for non-traditional retrieval tasks. All the relevant literature has been synthesized to make it easy for a reader to digest the research progress achieved so far and see the frontier of research in this area. The book also offers practitioners an informative introduction to a set of practically useful language models that can effectively solve a variety of retrieval problems. No prior knowledge about information retrieval is required, but some basic knowledge about probability and statistics would be useful for fully digesting all the details. Table of Contents: Introduction / Overview of Information Retrieval Models / Simple Query Likelihood Retrieval Model / Complex Query Likelihood Model / Probabilistic Distance Retrieval Model / Language Models for Special Retrieval Tasks / Language Models for Latent Topic Analysis / Conclusions. N° de réf. du vendeur 9783031010026

Contacter le vendeur

Acheter neuf

EUR 35,30
Autre devise
Frais de port : EUR 10,99
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Chengxiang Zhai
ISBN 10 : 3031010027 ISBN 13 : 9783031010026
Neuf Taschenbuch
impression à la demande

Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -As online information grows dramatically, search engines such as Google are playing a more and more important role in our lives. Critical to all search engines is the problem of designing an effective retrieval model that can rank documents accurately for a given query. This has been a central research problem in information retrieval for several decades. In the past ten years, a new generation of retrieval models, often referred to as statistical language models, has been successfully applied to solve many different information retrieval problems. Compared with the traditional models such as the vector space model, these new models have a more sound statistical foundation and can leverage statistical estimation to optimize retrieval parameters. They can also be more easily adapted to model non-traditional and complex retrieval problems. Empirically, they tend to achieve comparable or better performance than a traditional model with less effort on parameter tuning. This book systematically reviews the large body of literature on applying statistical language models to information retrieval with an emphasis on the underlying principles, empirically effective language models, and language models developed for non-traditional retrieval tasks. All the relevant literature has been synthesized to make it easy for a reader to digest the research progress achieved so far and see the frontier of research in this area. The book also offers practitioners an informative introduction to a set of practically useful language models that can effectively solve a variety of retrieval problems. No prior knowledge about information retrieval is required, but some basic knowledge about probability and statistics would be useful for fully digesting all the details. Table of Contents: Introduction / Overview of Information Retrieval Models / Simple Query Likelihood Retrieval Model / Complex Query Likelihood Model / Probabilistic Distance Retrieval Model / Language Models for Special Retrieval Tasks / Language Models for Latent Topic Analysis / Conclusions 144 pp. Englisch. N° de réf. du vendeur 9783031010026

Contacter le vendeur

Acheter neuf

EUR 35,30
Autre devise
Frais de port : EUR 11
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image d'archives

Zhai, Chengxiang
Edité par Springer 2008-12, 2008
ISBN 10 : 3031010027 ISBN 13 : 9783031010026
Neuf PF

Vendeur : Chiron Media, Wallingford, Royaume-Uni

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

PF. Etat : New. N° de réf. du vendeur 6666-IUK-9783031010026

Contacter le vendeur

Acheter neuf

EUR 35,61
Autre devise
Frais de port : EUR 10,99
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 10 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Chengxiang Zhai
ISBN 10 : 3031010027 ISBN 13 : 9783031010026
Neuf Taschenbuch

Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. Neuware -As online information grows dramatically, search engines such as Google are playing a more and more important role in our lives. Critical to all search engines is the problem of designing an effective retrieval model that can rank documents accurately for a given query. This has been a central research problem in information retrieval for several decades. In the past ten years, a new generation of retrieval models, often referred to as statistical language models, has been successfully applied to solve many different information retrieval problems. Compared with the traditional models such as the vector space model, these new models have a more sound statistical foundation and can leverage statistical estimation to optimize retrieval parameters. They can also be more easily adapted to model non-traditional and complex retrieval problems. Empirically, they tend to achieve comparable or better performance than a traditional model with less effort on parameter tuning. This book systematically reviews the large body of literature on applying statistical language models to information retrieval with an emphasis on the underlying principles, empirically effective language models, and language models developed for non-traditional retrieval tasks. All the relevant literature has been synthesized to make it easy for a reader to digest the research progress achieved so far and see the frontier of research in this area. The book also offers practitioners an informative introduction to a set of practically useful language models that can effectively solve a variety of retrieval problems. No prior knowledge about information retrieval is required, but some basic knowledge about probability and statistics would be useful for fully digesting all the details. Table of Contents: Introduction / Overview of Information Retrieval Models / Simple Query Likelihood Retrieval Model / Complex Query Likelihood Model / Probabilistic Distance Retrieval Model / Language Models for Special Retrieval Tasks / Language Models for Latent Topic Analysis / ConclusionsSpringer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 144 pp. Englisch. N° de réf. du vendeur 9783031010026

Contacter le vendeur

Acheter neuf

EUR 35,30
Autre devise
Frais de port : EUR 15
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image d'archives

Zhai, Chengxiang
Edité par Springer, 2008
ISBN 10 : 3031010027 ISBN 13 : 9783031010026
Neuf Couverture souple

Vendeur : Books Puddle, New York, NY, Etats-Unis

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. 1st edition NO-PA16APR2015-KAP. N° de réf. du vendeur 26395065318

Contacter le vendeur

Acheter neuf

EUR 45,98
Autre devise
Frais de port : EUR 7,69
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 4 disponible(s)

Ajouter au panier

Image d'archives

Zhai, Chengxiang
Edité par Springer, 2008
ISBN 10 : 3031010027 ISBN 13 : 9783031010026
Neuf Couverture souple
impression à la demande

Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. PRINT ON DEMAND. N° de réf. du vendeur 18395065324

Contacter le vendeur

Acheter neuf

EUR 48,72
Autre devise
Frais de port : EUR 7,95
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 4 disponible(s)

Ajouter au panier

Image d'archives

Zhai, Chengxiang
Edité par Springer, 2008
ISBN 10 : 3031010027 ISBN 13 : 9783031010026
Neuf Couverture souple
impression à la demande

Vendeur : Majestic Books, Hounslow, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Print on Demand. N° de réf. du vendeur 402360377

Contacter le vendeur

Acheter neuf

EUR 46,45
Autre devise
Frais de port : EUR 10,25
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 4 disponible(s)

Ajouter au panier