Articles liés à Statistical Significance Testing for Natural Language...

Statistical Significance Testing for Natural Language Processing - Couverture souple

 
9783031010460: Statistical Significance Testing for Natural Language Processing

Synopsis

Data-driven experimental analysis has become the main evaluation tool of Natural Language Processing (NLP) algorithms. In fact, in the last decade, it has become rare to see an NLP paper, particularly one that proposes a new algorithm, that does not include extensive experimental analysis, and the number of involved tasks, datasets, domains, and languages is constantly growing. This emphasis on empirical results highlights the role of statistical significance testing in NLP research: If we, as a community, rely on empirical evaluation to validate our hypotheses and reveal the correct language processing mechanisms, we better be sure that our results are not coincidental.

The goal of this book is to discuss the main aspects of statistical significance testing in NLP. Our guiding assumption throughout the book is that the basic question NLP researchers and engineers deal with is whether or not one algorithm can be considered better than another one. This question drivesthe field forward as it allows the constant progress of developing better technology for language processing challenges. In practice, researchers and engineers would like to draw the right conclusion from a limited set of experiments, and this conclusion should hold for other experiments with datasets they do not have at their disposal or that they cannot perform due to limited time and resources. The book hence discusses the opportunities and challenges in using statistical significance testing in NLP, from the point of view of experimental comparison between two algorithms. We cover topics such as choosing an appropriate significance test for the major NLP tasks, dealing with the unique aspects of significance testing for non-convex deep neural networks, accounting for a large number of comparisons between two NLP algorithms in a statistically valid manner (multiple hypothesis testing), and, finally, the unique challenges yielded by the nature of the data and practices of the field.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

À propos de l?auteur

Rotem Dror is a Ph.D. student in the Natural Language Processing Research Group under the supervision of Professor Roi Reichart at the Technion, Israel Institute of Technology. Rotem's research interests lie in the intersection of Machine Learning, Statistics, Optimization, and Natural Language Processing. In her Ph.D., she focuses mainly on developing statistical methods for evaluating results of NLP tasks and on novel algorithms for structured prediction in NLP. Rotem's papers have been published in the top-tier conferences and journals of the NLP community. Rotem is a recipient of the Google Ph.D. Fellowship 2018.Lotem Peled-Cohen holds an M.Sc. in Natural Language Processing (cum laude) from the Technion, under the supervision of Professor Roi Reichart. Lotem's research revolved around textual sarcasm, and her work about sarcasm interpretation using monolingual Machine Translation was published in the ACL 2017 Proceedings and appeared in multiple media channels. After her studies, Lotem worked as a Data Scientist, focusing mostly on Conversational AI. She later became an independent consultant and lecturer at ML, NLP, and Deep Learning. Lotem was a lecturer at multiple colleges and presented in conferences worldwide. Nowadays, Lotem brings her ML & NLP expertise to the world of product management at Samsung Next, as part of the Whisk product department. Lotem works as an ML Product Manager who leadsa collaboration between Samsung offices worldwide (Korea, Russia, US, and Israel) responsible for building innovative, intelligent, and trustworthy ML products.Segev Shlomov is a Ph.D. student under the supervision of Associate Professor Yakov Babichenko at the Technion, Israel Institute of Technology. Segev's research interests lie at the intersection of Statistics, Social Learning, and Information Theory. Segev holds an M.Sc. in Operations Research (summa cum laude) from the Technion. He was three-time a summer intern at the Artificial Intelligence department of the IBM research labs, Haifa, Israel, and he is one of the main contributors to IBM's Lambada AI service. Segev's papers have been published in top-tier conferences and journals of both the NLP community and the Economics and Computation communities. Segev is a recipient of the Jacobs Outstanding Ph.D. Scholarship for the year 2020.Roi Reichart is an Associate Professor at the Technion, Israel Institute of Technology. Before joining the Technion, on July 2013, he was a post-doctoral researcher at the Computer Laboratory of the University of Cambridge, UK, and at the Computer Science and Artificial Intelligence Laboratory (CSAIL) of MIT. Prior to this, he was a Ph.D. student under the supervision of Professor Ari Rappoport at the Interdisciplinary Center for Neural Computation (ICNC) of Hebrew University of Jerusalem. His main research interest is NLP, with a focus on language learning in its context and designing models that integrate domain and world knowledgewith data-driven methods. He has hence worked on problems such as domain adaptation, learning with minimal human annotation (and involvement), language transfer and multilingual learning, multi-modal (text and vision) processing, and NLP of Web data. He has focused on structured aspects of language and has developed effective algorithms for inference across linguistic structures. Finally, he is interested in proper evaluation of NLP algorithms and has worked on problems such as measuring statistical significance in NLP, word embedding evaluation, and unsupervised learning (particularly clustering) evaluation.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Acheter D'occasion

état :  Comme neuf
Unread book in perfect condition...
Afficher cet article
EUR 74,35

Autre devise

EUR 17,23 expédition depuis Etats-Unis vers France

Destinations, frais et délais

Acheter neuf

Afficher cet article
EUR 51,51

Autre devise

EUR 9,70 expédition depuis Allemagne vers France

Destinations, frais et délais

Autres éditions populaires du même titre

9781681737959: Statistical Significance Testing for Natural Language Processing

Edition présentée

ISBN 10 :  1681737957 ISBN 13 :  9781681737959
Editeur : Morgan & Claypool Publishers, 2020
Couverture souple

Résultats de recherche pour Statistical Significance Testing for Natural Language...

Image fournie par le vendeur

Dror, Rotem|Peled-Cohen, Lotem|Shlomov, Segev|Reichart, Roi
ISBN 10 : 3031010469 ISBN 13 : 9783031010460
Neuf Couverture souple
impression à la demande

Vendeur : moluna, Greven, Allemagne

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Data-driven experimental analysis has become the main evaluation tool of Natural Language Processing (NLP) algorithms. In fact, in the last decade, it has become rare to see an NLP paper, particularly one that proposes a new algorithm, that does n. N° de réf. du vendeur 608129293

Contacter le vendeur

Acheter neuf

EUR 51,51
Autre devise
Frais de port : EUR 9,70
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Rotem Dror
ISBN 10 : 3031010469 ISBN 13 : 9783031010460
Neuf Taschenbuch

Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - Data-driven experimental analysis has become the main evaluation tool of Natural Language Processing (NLP) algorithms. In fact, in the last decade, it has become rare to see an NLP paper, particularly one that proposes a new algorithm, that does not include extensive experimental analysis, and the number of involved tasks, datasets, domains, and languages is constantly growing. This emphasis on empirical results highlights the role of statistical significance testing in NLP research: If we, as a community, rely on empirical evaluation to validate our hypotheses and reveal the correct language processing mechanisms, we better be sure that our results are not coincidental.The goal of this book is to discuss the main aspects of statistical significance testing in NLP. Our guiding assumption throughout the book is that the basic question NLP researchers and engineers deal with is whether or not one algorithm can be considered better than another one. This question drivesthe field forward as it allows the constant progress of developing better technology for language processing challenges. In practice, researchers and engineers would like to draw the right conclusion from a limited set of experiments, and this conclusion should hold for other experiments with datasets they do not have at their disposal or that they cannot perform due to limited time and resources. The book hence discusses the opportunities and challenges in using statistical significance testing in NLP, from the point of view of experimental comparison between two algorithms. We cover topics such as choosing an appropriate significance test for the major NLP tasks, dealing with the unique aspects of significance testing for non-convex deep neural networks, accounting for a large number of comparisons between two NLP algorithms in a statistically valid manner (multiple hypothesis testing), and, finally, the unique challenges yielded by the nature of the data and practices of the field. N° de réf. du vendeur 9783031010460

Contacter le vendeur

Acheter neuf

EUR 58,84
Autre devise
Frais de port : EUR 10,99
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Rotem Dror
ISBN 10 : 3031010469 ISBN 13 : 9783031010460
Neuf Taschenbuch
impression à la demande

Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Data-driven experimental analysis has become the main evaluation tool of Natural Language Processing (NLP) algorithms. In fact, in the last decade, it has become rare to see an NLP paper, particularly one that proposes a new algorithm, that does not include extensive experimental analysis, and the number of involved tasks, datasets, domains, and languages is constantly growing. This emphasis on empirical results highlights the role of statistical significance testing in NLP research: If we, as a community, rely on empirical evaluation to validate our hypotheses and reveal the correct language processing mechanisms, we better be sure that our results are not coincidental.The goal of this book is to discuss the main aspects of statistical significance testing in NLP. Our guiding assumption throughout the book is that the basic question NLP researchers and engineers deal with is whether or not one algorithm can be considered better than another one. This question drives the field forward as it allows the constant progress of developing better technology for language processing challenges. In practice, researchers and engineers would like to draw the right conclusion from a limited set of experiments, and this conclusion should hold for other experiments with datasets they do not have at their disposal or that they cannot perform due to limited time and resources. The book hence discusses the opportunities and challenges in using statistical significance testing in NLP, from the point of view of experimental comparison between two algorithms. We cover topics such as choosing an appropriate significance test for the major NLP tasks, dealing with the unique aspects of significance testing for non-convex deep neural networks, accounting for a large number of comparisons between two NLP algorithms in a statistically valid manner (multiple hypothesis testing), and, finally, the unique challenges yielded by the nature of the data and practices of the field. 120 pp. Englisch. N° de réf. du vendeur 9783031010460

Contacter le vendeur

Acheter neuf

EUR 58,84
Autre devise
Frais de port : EUR 11
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image d'archives

Dror, Rotem
Edité par Springer 2020-04, 2020
ISBN 10 : 3031010469 ISBN 13 : 9783031010460
Neuf PF

Vendeur : Chiron Media, Wallingford, Royaume-Uni

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

PF. Etat : New. N° de réf. du vendeur 6666-IUK-9783031010460

Contacter le vendeur

Acheter neuf

EUR 62,40
Autre devise
Frais de port : EUR 10,91
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 10 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Rotem Dror
ISBN 10 : 3031010469 ISBN 13 : 9783031010460
Neuf Taschenbuch

Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. Neuware -Data-driven experimental analysis has become the main evaluation tool of Natural Language Processing (NLP) algorithms. In fact, in the last decade, it has become rare to see an NLP paper, particularly one that proposes a new algorithm, that does not include extensive experimental analysis, and the number of involved tasks, datasets, domains, and languages is constantly growing. This emphasis on empirical results highlights the role of statistical significance testing in NLP research: If we, as a community, rely on empirical evaluation to validate our hypotheses and reveal the correct language processing mechanisms, we better be sure that our results are not coincidental.The goal of this book is to discuss the main aspects of statistical significance testing in NLP. Our guiding assumption throughout the book is that the basic question NLP researchers and engineers deal with is whether or not one algorithm can be considered better than another one. This question drivesthe field forward as it allows the constant progress of developing better technology for language processing challenges. In practice, researchers and engineers would like to draw the right conclusion from a limited set of experiments, and this conclusion should hold for other experiments with datasets they do not have at their disposal or that they cannot perform due to limited time and resources. The book hence discusses the opportunities and challenges in using statistical significance testing in NLP, from the point of view of experimental comparison between two algorithms. We cover topics such as choosing an appropriate significance test for the major NLP tasks, dealing with the unique aspects of significance testing for non-convex deep neural networks, accounting for a large number of comparisons between two NLP algorithms in a statistically valid manner (multiple hypothesis testing), and, finally, the unique challenges yielded by the nature of the data and practices of the field.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 120 pp. Englisch. N° de réf. du vendeur 9783031010460

Contacter le vendeur

Acheter neuf

EUR 58,84
Autre devise
Frais de port : EUR 15
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image d'archives

Dror, Rotem; Peled-Cohen, Lotem; Shlomov, Segev; Reichart, Roi
Edité par Springer, 2020
ISBN 10 : 3031010469 ISBN 13 : 9783031010460
Neuf Couverture souple

Vendeur : California Books, Miami, FL, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur I-9783031010460

Contacter le vendeur

Acheter neuf

EUR 71,02
Autre devise
Frais de port : EUR 6,90
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Dror, Rotem; Peled-Cohen, Lotem; Shlomov, Segev; Reichart, Roi
Edité par Springer, 2020
ISBN 10 : 3031010469 ISBN 13 : 9783031010460
Neuf Couverture souple

Vendeur : Books Puddle, New York, NY, Etats-Unis

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. 1st edition NO-PA16APR2015-KAP. N° de réf. du vendeur 26394683708

Contacter le vendeur

Acheter neuf

EUR 75,28
Autre devise
Frais de port : EUR 7,76
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 4 disponible(s)

Ajouter au panier

Image d'archives

Dror, Rotem
Edité par Springer, 2020
ISBN 10 : 3031010469 ISBN 13 : 9783031010460
Neuf Couverture souple

Vendeur : Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlande

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur V9783031010460

Contacter le vendeur

Acheter neuf

EUR 81,77
Autre devise
Frais de port : EUR 3
De Irlande vers France
Destinations, frais et délais

Quantité disponible : 15 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Dror, Rotem
Edité par Springer, 2020
ISBN 10 : 3031010469 ISBN 13 : 9783031010460
Neuf Couverture souple

Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 44571160-n

Contacter le vendeur

Acheter neuf

EUR 68,67
Autre devise
Frais de port : EUR 17,23
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 15 disponible(s)

Ajouter au panier

Image d'archives

Dror, Rotem; Peled-Cohen, Lotem; Shlomov, Segev; Reichart, Roi
Edité par Springer, 2020
ISBN 10 : 3031010469 ISBN 13 : 9783031010460
Neuf Couverture souple
impression à la demande

Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. PRINT ON DEMAND. N° de réf. du vendeur 18394683702

Contacter le vendeur

Acheter neuf

EUR 79,10
Autre devise
Frais de port : EUR 7,95
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 4 disponible(s)

Ajouter au panier

There are 6 autres exemplaires de ce livre sont disponibles

Afficher tous les résultats pour ce livre