Articles liés à Ensemble Methods in Data Mining: Improving Accuracy...

Ensemble Methods in Data Mining: Improving Accuracy Through Combining Predictions - Couverture souple

 
9783031030277: Ensemble Methods in Data Mining: Improving Accuracy Through Combining Predictions

Synopsis

Ensemble methods have been called the most influential development in Data Mining and Machine Learning in the past decade. They combine multiple models into one usually more accurate than the best of its components. Ensembles can provide a critical boost to industrial challenges -- from investment timing to drug discovery, and fraud detection to recommendation systems -- where predictive accuracy is more vital than model interpretability. Ensembles are useful with all modeling algorithms, but this book focuses on decision trees to explain them most clearly. After describing trees and their strengths and weaknesses, the authors provide an overview of regularization -- today understood to be a key reason for the superior performance of modern ensembling algorithms. The book continues with a clear description of two recent developments: Importance Sampling (IS) and Rule Ensembles (RE). IS reveals classic ensemble methods -- bagging, random forests, and boosting -- to be special cases of a single algorithm, thereby showing how to improve their accuracy and speed. REs are linear rule models derived from decision tree ensembles. They are the most interpretable version of ensembles, which is essential to applications such as credit scoring and fault diagnosis. Lastly, the authors explain the paradox of how ensembles achieve greater accuracy on new data despite their (apparently much greater) complexity. This book is aimed at novice and advanced analytic researchers and practitioners -- especially in Engineering, Statistics, and Computer Science. Those with little exposure to ensembles will learn why and how to employ this breakthrough method, and advanced practitioners will gain insight into building even more powerful models. Throughout, snippets of code in R are provided to illustrate the algorithms described and to encourage the reader to try the techniques. The authorsare industry experts in data mining and machine learning who are also adjunct professors and popular speakers. Although early pioneers in discovering and using ensembles, they here distill and clarify the recent groundbreaking work of leading academics (such as Jerome Friedman) to bring the benefits of ensembles to practitioners. Table of Contents: Ensembles Discovered / Predictive Learning and Decision Trees / Model Complexity, Model Selection and Regularization / Importance Sampling and the Classic Ensemble Methods / Rule Ensembles and Interpretation Statistics / Ensemble Complexity

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

Acheter neuf

Afficher cet article
EUR 52,58

Autre devise

EUR 4,62 expédition depuis Royaume-Uni vers France

Destinations, frais et délais

Autres éditions populaires du même titre

9781608452842: Ensemble Methods in Data Mining: Improving Accuracy Through Combining Predictions

Edition présentée

ISBN 10 :  1608452840 ISBN 13 :  9781608452842
Editeur : Morgan and Claypool Publishers, 2010
Couverture souple

Résultats de recherche pour Ensemble Methods in Data Mining: Improving Accuracy...

Image d'archives

Seni, Giovanni; Elder, John
Edité par Springer, 2010
ISBN 10 : 3031030273 ISBN 13 : 9783031030277
Neuf Couverture souple

Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. In. N° de réf. du vendeur ria9783031030277_new

Contacter le vendeur

Acheter neuf

EUR 52,58
Autre devise
Frais de port : EUR 4,62
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Giovanni Seni, Seni,John Elder, Elder
Edité par Springer Nature B.V., 2010
ISBN 10 : 3031030273 ISBN 13 : 9783031030277
Neuf PAP
impression à la demande

Vendeur : PBShop.store US, Wood Dale, IL, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

PAP. Etat : New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L0-9783031030277

Contacter le vendeur

Acheter neuf

EUR 57,99
Autre devise
Frais de port : EUR 1,06
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Giovanni Seni, Seni,John Elder, Elder
Edité par Springer Nature B.V., 2010
ISBN 10 : 3031030273 ISBN 13 : 9783031030277
Neuf PAP
impression à la demande

Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

PAP. Etat : New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L0-9783031030277

Contacter le vendeur

Acheter neuf

EUR 55,09
Autre devise
Frais de port : EUR 4,93
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier