Articles liés à Machine and Deep Learning Algorithms and Applications

Machine and Deep Learning Algorithms and Applications - Couverture souple

 
9783031037481: Machine and Deep Learning Algorithms and Applications
  • ÉditeurSpringer
  • Date d'édition2021
  • ISBN 10 3031037480
  • ISBN 13 9783031037481
  • ReliureBroché
  • Langueanglais
  • Nombre de pages124

Acheter neuf

Afficher cet article
EUR 67,34

Autre devise

EUR 14,25 expédition depuis Royaume-Uni vers Etats-Unis

Destinations, frais et délais

Autres éditions populaires du même titre

9781636392653: Machine and Deep Learning Algorithms and Applications

Edition présentée

ISBN 10 :  1636392652 ISBN 13 :  9781636392653
Editeur : Morgan & Claypool Publishers, 2021
Couverture souple

Résultats de recherche pour Machine and Deep Learning Algorithms and Applications

Image d'archives

Shankar Shanthamallu, Uday; Spanias, Andreas
Edité par Springer, 2021
ISBN 10 : 3031037480 ISBN 13 : 9783031037481
Neuf Couverture souple

Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. In English. N° de réf. du vendeur ria9783031037481_new

Contacter le vendeur

Acheter neuf

EUR 67,34
Autre devise
Frais de port : EUR 14,25
De Royaume-Uni vers Etats-Unis
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Shankar Shanthamallu, Uday
Edité par Springer 2021-12, 2021
ISBN 10 : 3031037480 ISBN 13 : 9783031037481
Neuf PF

Vendeur : Chiron Media, Wallingford, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

PF. Etat : New. N° de réf. du vendeur 6666-IUK-9783031037481

Contacter le vendeur

Acheter neuf

EUR 63,28
Autre devise
Frais de port : EUR 18,42
De Royaume-Uni vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 10 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Andreas Spanias
ISBN 10 : 3031037480 ISBN 13 : 9783031037481
Neuf Taschenbuch
impression à la demande

Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book introduces basic machine learning concepts and applications for a broad audience that includes students, faculty, and industry practitioners. We begin by describing how machine learning provides capabilities to computers and embedded systems to learn from data. A typical machine learning algorithm involves training, and generally the performance of a machine learning model improves with more training data. Deep learning is a sub-area of machine learning that involves extensive use of layers of artificial neural networks typically trained on massive amounts of data. Machine and deep learning methods are often used in contemporary data science tasks to address the growing data sets and detect, cluster, and classify data patterns. Although machine learning commercial interest has grown relatively recently, the roots of machine learning go back to decades ago. We note that nearly all organizations, including industry, government, defense, and health, are using machine learning to address a variety of needs and applications. The machine learning paradigms presented can be broadly divided into the following three categories: supervised learning, unsupervised learning, and semi-supervised learning. Supervised learning algorithms focus on learning a mapping function, and they are trained with supervision on labeled data. Supervised learning is further sub-divided into classification and regression algorithms. Unsupervised learning typically does not have access to ground truth, and often the goal is to learn or uncover the hidden pattern in the data. Through semi-supervised learning, one can effectively utilize a large volume of unlabeled data and a limited amount of labeled data to improve machine learning model performances. Deep learning and neural networks are also covered in this book. Deep neural networks have attracted a lot of interest during the last ten years due to the availability of graphics processing units (GPU) computational power, big data, and new software platforms. They have strong capabilities in terms of learning complex mapping functions for different types of data. We organize the book as follows. The book starts by introducing concepts in supervised, unsupervised, and semi-supervised learning. Several algorithms and their inner workings are presented within these three categories. We then continue with a brief introduction to artificial neural network algorithms and their properties. In addition, we cover an array of applications and provide extensive bibliography. The book ends with a summary of the key machine learning concepts. 124 pp. Englisch. N° de réf. du vendeur 9783031037481

Contacter le vendeur

Acheter neuf

EUR 58,84
Autre devise
Frais de port : EUR 23
De Allemagne vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Andreas Spanias
ISBN 10 : 3031037480 ISBN 13 : 9783031037481
Neuf Taschenbuch

Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This book introduces basic machine learning concepts and applications for a broad audience that includes students, faculty, and industry practitioners. We begin by describing how machine learning provides capabilities to computers and embedded systems to learn from data. A typical machine learning algorithm involves training, and generally the performance of a machine learning model improves with more training data. Deep learning is a sub-area of machine learning that involves extensive use of layers of artificial neural networks typically trained on massive amounts of data. Machine and deep learning methods are often used in contemporary data science tasks to address the growing data sets and detect, cluster, and classify data patterns. Although machine learning commercial interest has grown relatively recently, the roots of machine learning go back to decades ago. We note that nearly all organizations, including industry, government, defense, and health, are using machine learning toaddress a variety of needs and applications. The machine learning paradigms presented can be broadly divided into the following three categories: supervised learning, unsupervised learning, and semi-supervised learning. Supervised learning algorithms focus on learning a mapping function, and they are trained with supervision on labeled data. Supervised learning is further sub-divided into classification and regression algorithms. Unsupervised learning typically does not have access to ground truth, and often the goal is to learn or uncover the hidden pattern in the data. Through semi-supervised learning, one can effectively utilize a large volume of unlabeled data and a limited amount of labeled data to improve machine learning model performances. Deep learning and neural networks are also covered in this book. Deep neural networks have attracted a lot of interest during the last ten years due to the availability of graphics processing units (GPU) computational power, big data, and new software platforms. They have strong capabilities in terms of learning complex mapping functions for different types of data. We organize the book as follows. The book starts by introducing concepts in supervised, unsupervised, and semi-supervised learning. Several algorithms and their inner workings are presented within these three categories. We then continue with a brief introduction to artificial neural network algorithms and their properties. In addition, we cover an array of applications and provide extensive bibliography. The book ends with a summary of the key machine learning concepts. N° de réf. du vendeur 9783031037481

Contacter le vendeur

Acheter neuf

EUR 58,84
Autre devise
Frais de port : EUR 29,23
De Allemagne vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Shankar, Uday/ Spanias, Andreas
Edité par Springer Nature, 2021
ISBN 10 : 3031037480 ISBN 13 : 9783031037481
Neuf Paperback

Vendeur : Revaluation Books, Exeter, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : Brand New. 122 pages. 9.25x7.51x0.26 inches. In Stock. N° de réf. du vendeur x-3031037480

Contacter le vendeur

Acheter neuf

EUR 86,41
Autre devise
Frais de port : EUR 11,89
De Royaume-Uni vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Shankar Shanthamallu, Uday|Spanias, Andreas
ISBN 10 : 3031037480 ISBN 13 : 9783031037481
Neuf Couverture souple
impression à la demande

Vendeur : moluna, Greven, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book introduces basic machine learning concepts and applications for a broad audience that includes students, faculty, and industry practitioners. We begin by describing how machine learning provides capabilities to computers and embedded systems to le. N° de réf. du vendeur 608129657

Contacter le vendeur

Acheter neuf

EUR 51,51
Autre devise
Frais de port : EUR 48,99
De Allemagne vers Etats-Unis
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier