Articles liés à Applied Time Series Analysis and Forecasting With Python

Applied Time Series Analysis and Forecasting With Python - Couverture rigide

 
9783031135835: Applied Time Series Analysis and Forecasting With Python

Synopsis

This textbook presents methods and techniques for time series analysis and forecasting and shows how to use Python to implement them and solve data science problems. It covers not only common statistical approaches and time series models, including ARMA, SARIMA, VAR, GARCH and state space and Markov switching models for (non)stationary, multivariate and financial time series, but also modern machine learning procedures and challenges for time series forecasting. Providing an organic combination of the principles of time series analysis and Python programming, it enables the reader to study methods and techniques and practice writing and running Python code at the same time. Its data-driven approach to analyzing and modeling time series data helps new learners to visualize and interpret both the raw data and its computed results. Primarily intended for students of statistics, economics and data science with an undergraduate knowledge of probability and statistics, the book will equallyappeal to industry professionals in the fields of artificial intelligence and data science, and anyone interested in using Python to solve time series problems.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

À propos de l?auteur

Changquan Huang is an Associate Professor at the Department of Statistics and Data Science, School of Economics, Xiamen University (XMU), China. He obtained his PhD in Statistics from The Chinese University of Hong Kong. For over 18 years, he has taught the course Time Series Analysis at XMU. He has authored and translated monographs in Chinese, including Bayesian Statistics with R (Tsinghua University Press 2017) and Time Series and Financial Data Analysis (China Statistics Press 2004). His research interests now cover applied statistics and artificial intelligence methods for time series.

Alla Petukhina is a Lecturer at the School of Computing, Communication and Business, HTW Berlin, Germany. She was a postdoctoral researcher at the School of Business and Economics at the Humboldt-Universität zu Berlin, where she obtained her PhD in Statistics in 2018. Her research interests include asset allocation strategies, regression shrinkage techniques, quantiles and expectiles, history of statistics and investment strategies with crypto-currencies.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Acheter neuf

Afficher cet article

EUR 9,70 expédition depuis Allemagne vers France

Destinations, frais et délais

Autres éditions populaires du même titre

9783031135866: Applied Time Series Analysis and Forecasting with Python

Edition présentée

ISBN 10 :  3031135865 ISBN 13 :  9783031135866
Editeur : Springer, 2023
Couverture souple

Résultats de recherche pour Applied Time Series Analysis and Forecasting With Python

Image fournie par le vendeur

Huang, Changquan|Petukhina, Alla
ISBN 10 : 3031135830 ISBN 13 : 9783031135835
Neuf Couverture rigide
impression à la demande

Vendeur : moluna, Greven, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This textbook presents methods and techniques for time series analysis and forecasting and shows how to use Python to implement them and solve data science problems. It covers not only common statistical approaches and time series models, including ARMA, SA. N° de réf. du vendeur 668447561

Contacter le vendeur

Acheter neuf

EUR 93
Autre devise
Frais de port : EUR 9,70
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier