This book helps and promotes the use of machine learning tools and techniques in econometrics and explains how machine learning can enhance and expand the econometrics toolbox in theory and in practice.
Throughout the volume, the authors raise and answer six questions: 1) What are the similarities between existing econometric and machine learning techniques? 2) To what extent can machine learning techniques assist econometric investigation? Specifically, how robust or stable is the prediction from machine learning algorithms given the ever-changing nature of human behavior? 3) Can machine learning techniques assist in testing statistical hypotheses and identifying causal relationships in 'big data? 4) How can existing econometric techniques be extended by incorporating machine learning concepts? 5) How can new econometric tools and approaches be elaborated on based on machine learning techniques? 6) Is it possible to develop machine learning techniques further and make them even more readily applicable in econometrics?
As the data structures in economic and financial data become more complex and models become more sophisticated, the book takes a multidisciplinary approach in developing both disciplines of machine learning and econometrics in conjunction, rather than in isolation. This volume is a must-read for scholars, researchers, students, policy-makers, and practitioners, who are using econometrics in theory or in practice.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
László Mátyás is a University Professor at the Department of Economics and Business at the Central European University (CEU - Budapest, Hungary and Vienna, Austria). He (co)authored and (co)edited several high impact publications in econometrics, mostly in the field of panel data. Earlier, among others, he worked as Senior Lecturer at Monash University (Melbourne, Australia), was the founding Director of the Institute for Economic Analysis (Budapest, Hungary), and also served as Provost of CEU. Matyas serves as a co-editor of the Springer book series "Advanced Studies in Theoretical and Applied Econometrics".
Felix Chan is an Associate Professor at Curtin University and an elected Fellow of the Modelling and Simulation Society of Australia and New Zealand (MSSANZ). He serves as the Deputy Head, School of Accounting, Economics and Finance and was the Director of Centre for Research in Applied Economics (CRAE) between 2017 and 2022.Associate Professor Chan had also served as an external consultant to the Commonwealth Grant Commission (CGC), Department of Treasury Western Australia and Chamber of Commerce and Industry (WA) on issues surrounding forecasting, data analytics and mathematical modelling.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9783031151514_new
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : New. N° de réf. du vendeur 46569036-n
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 46569036-n
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 46569036
Quantité disponible : Plus de 20 disponibles
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9783031151514
Quantité disponible : Plus de 20 disponibles
Vendeur : moluna, Greven, Allemagne
Etat : New. N° de réf. du vendeur 1038610136
Quantité disponible : Plus de 20 disponibles
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book helps and promotes the use of machine learning tools and techniques in econometrics and explains how machine learning can enhance and expand the econometrics toolbox in theory and in practice.Throughout the volume, the authors raise and answer six questions: 1) What are the similarities between existing econometric and machine learning techniques 2) To what extent can machine learning techniques assist econometric investigation Specifically, how robust or stable is the prediction from machine learning algorithms given the ever-changing nature of human behavior 3) Can machine learning techniques assist in testing statistical hypotheses and identifying causal relationships in 'big data 4) How can existing econometric techniques be extended by incorporating machine learning concepts 5) How can new econometric tools and approaches be elaborated on based on machine learning techniques 6) Is it possible to develop machine learning techniques furtherand make them even more readily applicable in econometrics As the data structures in economic and financial data become more complex and models become more sophisticated, the book takes a multidisciplinary approach in developing both disciplines of machine learning and econometrics in conjunction, rather than in isolation. This volume is a must-read for scholars, researchers, students, policy-makers, and practitioners, who are using econometrics in theory or in practice. 396 pp. Englisch. N° de réf. du vendeur 9783031151514
Quantité disponible : 2 disponible(s)
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 46569036
Quantité disponible : Plus de 20 disponibles
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. pp. 396. N° de réf. du vendeur 26398551893
Quantité disponible : 4 disponible(s)
Vendeur : preigu, Osnabrück, Allemagne
Taschenbuch. Etat : Neu. Econometrics with Machine Learning | Felix Chan (u. a.) | Taschenbuch | xxii | Englisch | 2023 | Springer | EAN 9783031151514 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand. N° de réf. du vendeur 127412470
Quantité disponible : 5 disponible(s)