This textbook provides an accessible overview of statistical learning methods and techniques, and includes case studies using the statistical software Stata. After introductory material on statistical learning concepts and practical aspects, each further chapter is devoted to a statistical learning algorithm or a group of related techniques. In particular, the book presents logistic regression, regularized linear models such as the Lasso, nearest neighbors, the Naive Bayes classifier, classification trees, random forests, boosting, support vector machines, feature engineering, neural networks, and stacking. It also explains how to construct n-gram variables from text data. Examples, conceptual exercises and exercises using software are featured throughout, together with case studies in Stata, mostly from the social sciences; true to the book's goal to facilitate the use of modern methods of data science in the field. Although mainly intended for upper undergraduate and graduatestudents in the social sciences, given its applied nature, the book will equally appeal to readers from other disciplines, including the health sciences, statistics, engineering and computer science.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Matthias Schonlau is a Professor in the Department of Statistics and Actuarial Science at the University of Waterloo, Canada. Prior to his academic career, he spent 14 years at the RAND Corporation, USA, the Max Planck Institute for Human Development in Berlin, Germany, the German Institute for Economic Analysis (DIW), the National Institute of Statistical Sciences, USA, and AT&T Labs Research, USA. He won the Humboldt Prize and was elected Fellow of the American Statistical Association. He has published more than 80 peer-reviewed articles and is also the lead author of the book Conducting Research Surveys via E-Mail and the Web (RAND Corporation).
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 46117909-n
Quantité disponible : Plus de 20 disponibles
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9783031333897
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 46117909
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : New. N° de réf. du vendeur 46117909-n
Quantité disponible : Plus de 20 disponibles
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9783031333897_new
Quantité disponible : Plus de 20 disponibles
Vendeur : SKULIMA Wiss. Versandbuchhandlung, Westhofen, Allemagne
Etat : Neu. With Case Studies in Stata. XVI,332 Seiten mit 81 meist farbigen Abb., gebunden (Statistics and Computing/Springer-Verlag 2023). Statt EUR 128,39. Gewicht: 688 g - Gebunden/Gebundene Ausgabe. N° de réf. du vendeur 116630
Quantité disponible : 1 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Buch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This textbook provides an accessible overview of statistical learning methods and techniques, and includes case studies using the statistical software Stata. After introductory material on statistical learning concepts and practical aspects, each further chapter is devoted to a statistical learning algorithm or a group of related techniques. In particular, the book presents logistic regression, regularized linear models such as the Lasso, nearest neighbors, the Naive Bayes classifier, classification trees, random forests, boosting, support vector machines, feature engineering, neural networks, and stacking. It also explains how to construct n-gram variables from text data. Examples, conceptual exercises and exercises using software are featured throughout, together with case studies in Stata, mostly from the social sciences; true to the book's goal to facilitate the use of modern methods of data science in the field. Although mainly intended for upper undergraduate and graduate students in the social sciences, given its applied nature, the book will equally appeal to readers from other disciplines, including the health sciences, statistics, engineering and computer science. 348 pp. Englisch. N° de réf. du vendeur 9783031333897
Quantité disponible : 2 disponible(s)
Vendeur : Rarewaves USA, OSWEGO, IL, Etats-Unis
Hardback. Etat : New. 2023 ed. N° de réf. du vendeur LU-9783031333897
Quantité disponible : Plus de 20 disponibles
Vendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This textbook provides an accessible overview of statistical learning methods and techniques, and includes case studies using the statistical software Stata. After introductory material on statistical learning concepts and practical aspects, each further. N° de réf. du vendeur 855414945
Quantité disponible : Plus de 20 disponibles
Vendeur : Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlande
Etat : New. N° de réf. du vendeur V9783031333897
Quantité disponible : 15 disponible(s)