Articles liés à Mathematical Principles of Topological and Geometric...

Mathematical Principles of Topological and Geometric Data Analysis - Couverture rigide

 
9783031334399: Mathematical Principles of Topological and Geometric Data Analysis

Synopsis

This book explores and demonstrates how geometric tools can be used in data analysis. Beginning with a systematic exposition of the mathematical prerequisites, covering topics ranging from category theory to algebraic topology, Riemannian geometry, operator theory and network analysis, it goes on to describe and analyze some of the most important machine learning techniques for dimension reduction, including the different types of manifold learning and kernel methods. It also develops a new notion of curvature of generalized metric spaces, based on the notion of hyperconvexity, which can be used for the topological representation of geometric information.

In recent years there has been a fascinating development: concepts and methods originally created in the context of research in pure mathematics, and in particular in geometry, have become powerful tools in machine learning for the analysis of data. The underlying reason for this is that data are typically equipped with somekind of notion of distance, quantifying the differences between data points. Of course, to be successfully applied, the geometric tools usually need to be redefined, generalized, or extended appropriately.

Primarily aimed at mathematicians seeking an overview of the geometric concepts and methods that are useful for data analysis, the book will also be of interest to researchers in machine learning and data analysis who want to see a systematic mathematical foundation of the methods that they use.


Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

À propos de l?auteur

Parvaneh Joharinad received her PhD in mathematics from Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran in March 2013. She worked as an assistant professor in the geometry group at the Institute for Advanced Studies in Basic Sciences (IASBS) in Zanjan, Iran, for seven years. She is interested in the use of geometry in data science and machine learning, and in particular in dimensionality reduction, a fundamental problem in topological and geometric data analysis.

Her collaboration with Jürgen Jost began in 2017, via a project on a generalization of the concept of sectional curvature to datasets. In 2020, she received a grant from the Max-Planck society to continue her collaboration at the Max-Planck Institute for Mathematics in the Sciences, Leipzig, Germany. As of August 2022, she started a new position at the Center for Scalable Data Analytics and Artificial Intelligence, as a senior postdoc.

Jürgen Jost worked as a Professor of Mathematics at Ruhr University Bochum from 1984 to 1996 and since 1996 has been director and a permanent member of the Max Planck Institute for Mathematics in the Sciences, Leipzig. In 1998 he became an Honorary Professor at the University of Leipzig. He is also an external member of the Santa Fe Institute for the Sciences of Complexity, New Mexico.

He pursues both topical research in different fields of pure mathematics and theoretical physics (Riemannian and algebraic geometry, geometric analysis, calculus of variations, partial differential equations, dynamical systems, graph and hypergraph theory) and interdisciplinary research in complex systems, including evolutionary and theoretical molecular biology, mathematical and theoretical neuroscience, nonlinear dynamics and statistical physics, economics and social sciences, strategy science, history and philosophy of science. He directs a group of about 40 scientists, postdocs and PhD students, and has manyinternational cooperation partners.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Acheter D'occasion

état :  Très bon
Zustand: Sehr gut | Seiten: 292...
Afficher cet article
EUR 43,39

Autre devise

EUR 9,90 expédition depuis Allemagne vers France

Destinations, frais et délais

Acheter neuf

Afficher cet article
EUR 67,78

Autre devise

EUR 2,88 expédition depuis Etats-Unis vers France

Destinations, frais et délais

Résultats de recherche pour Mathematical Principles of Topological and Geometric...

Image d'archives

Jürgen Jost, Parvaneh Joharinad
ISBN 10 : 3031334396 ISBN 13 : 9783031334399
Ancien ou d'occasion Couverture rigide

Vendeur : Buchpark, Trebbin, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : Sehr gut. Zustand: Sehr gut | Seiten: 292 | Sprache: Englisch | Produktart: Bücher. N° de réf. du vendeur 42031707/2

Contacter le vendeur

Acheter D'occasion

EUR 43,39
Autre devise
Frais de port : EUR 9,90
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

0
Edité par Springer, 2023
ISBN 10 : 3031334396 ISBN 13 : 9783031334399
Neuf Couverture rigide

Vendeur : Basi6 International, Irving, TX, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. N° de réf. du vendeur ABEJUNE24-14144

Contacter le vendeur

Acheter neuf

EUR 67,78
Autre devise
Frais de port : EUR 2,88
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Jurgen Jost
ISBN 10 : 3031334396 ISBN 13 : 9783031334399
Neuf Couverture rigide

Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

HRD. Etat : New. New Book. Shipped from UK. Established seller since 2000. N° de réf. du vendeur S0-9783031334399

Contacter le vendeur

Acheter neuf

EUR 66
Autre devise
Frais de port : EUR 5,57
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Joharinad, Parvaneh|Jost, Jürgen
ISBN 10 : 3031334396 ISBN 13 : 9783031334399
Neuf Couverture rigide
impression à la demande

Vendeur : moluna, Greven, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book explores and demonstrates how geometric tools can be used in data analysis. Beginning with a systematic exposition of the mathematical prerequisites, covering topics ranging from category theory to algebraic topology, Riemannian geometry, opera. N° de réf. du vendeur 855414958

Contacter le vendeur

Acheter neuf

EUR 64,33
Autre devise
Frais de port : EUR 9,70
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Parvaneh Joharinad
Edité par Springer, 2023
ISBN 10 : 3031334396 ISBN 13 : 9783031334399
Neuf Couverture rigide

Vendeur : Books Puddle, New York, NY, Etats-Unis

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 26396414322

Contacter le vendeur

Acheter neuf

EUR 69,69
Autre devise
Frais de port : EUR 7,74
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Joharinad Parvaneh
Edité par Springer, 2023
ISBN 10 : 3031334396 ISBN 13 : 9783031334399
Neuf Couverture rigide

Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 18396414328

Contacter le vendeur

Acheter neuf

EUR 72,59
Autre devise
Frais de port : EUR 7,95
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Joharinad Parvaneh
Edité par Springer, 2023
ISBN 10 : 3031334396 ISBN 13 : 9783031334399
Neuf Couverture rigide

Vendeur : Majestic Books, Hounslow, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 399995565

Contacter le vendeur

Acheter neuf

EUR 71,17
Autre devise
Frais de port : EUR 10,21
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Joharinad, Parvaneh/ Jost, Jürgen
Edité par Springer, 2023
ISBN 10 : 3031334396 ISBN 13 : 9783031334399
Neuf Couverture rigide

Vendeur : Revaluation Books, Exeter, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Hardcover. Etat : Brand New. 290 pages. 9.25x6.10x0.71 inches. In Stock. N° de réf. du vendeur __3031334396

Contacter le vendeur

Acheter neuf

EUR 71,27
Autre devise
Frais de port : EUR 11,53
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Jürgen Jost
ISBN 10 : 3031334396 ISBN 13 : 9783031334399
Neuf Couverture rigide

Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This book explores and demonstrates how geometric tools can be used in data analysis. Beginning with a systematic exposition of the mathematical prerequisites, covering topics ranging from category theory to algebraic topology, Riemannian geometry, operator theory and network analysis, it goes on to describe and analyze some of the most important machine learning techniques for dimension reduction, including the different types of manifold learning and kernel methods. It also develops a new notion of curvature of generalized metric spaces, based on the notion of hyperconvexity, which can be used for the topological representation of geometric information.In recent years there has been a fascinating development: concepts and methods originally created in the context of research in pure mathematics, and in particular in geometry, have become powerful tools in machine learning for the analysis of data. The underlying reason for this is that data are typically equipped with somekind of notion of distance, quantifying the differences between data points. Of course, to be successfully applied, the geometric tools usually need to be redefined, generalized, or extended appropriately.Primarily aimed at mathematicians seeking an overview of the geometric concepts and methods that are useful for data analysis, the book will also be of interest to researchers in machine learning and data analysis who want to see a systematic mathematical foundation of the methods that they use. N° de réf. du vendeur 9783031334399

Contacter le vendeur

Acheter neuf

EUR 74,89
Autre devise
Frais de port : EUR 10,99
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Jürgen Jost
ISBN 10 : 3031334396 ISBN 13 : 9783031334399
Neuf Couverture rigide
impression à la demande

Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book explores and demonstrates how geometric tools can be used in data analysis. Beginning with a systematic exposition of the mathematical prerequisites, covering topics ranging from category theory to algebraic topology, Riemannian geometry, operator theory and network analysis, it goes on to describe and analyze some of the most important machine learning techniques for dimension reduction, including the different types of manifold learning and kernel methods. It also develops a new notion of curvature of generalized metric spaces, based on the notion of hyperconvexity, which can be used for the topological representation of geometric information.In recent years there has been a fascinating development: concepts and methods originally created in the context of research in pure mathematics, and in particular in geometry, have become powerful tools in machine learning for the analysis of data. The underlying reason for this is that data are typically equipped with some kind of notion of distance, quantifying the differences between data points. Of course, to be successfully applied, the geometric tools usually need to be redefined, generalized, or extended appropriately.Primarily aimed at mathematicians seeking an overview of the geometric concepts and methods that are useful for data analysis, the book will also be of interest to researchers in machine learning and data analysis who want to see a systematic mathematical foundation of the methods that they use. 292 pp. Englisch. N° de réf. du vendeur 9783031334399

Contacter le vendeur

Acheter neuf

EUR 74,89
Autre devise
Frais de port : EUR 11
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

There are 4 autres exemplaires de ce livre sont disponibles

Afficher tous les résultats pour ce livre