This monograph provides a comprehensive study of a typical and novel function space, known as the $\mathcal{N}_p$ spaces. These spaces are Banach and Hilbert spaces of analytic functions on the open unit disk and open unit ball, and the authors also explore composition operators and weighted composition operators on these spaces. The book covers a significant portion of the recent research on these spaces, making it an invaluable resource for those delving into this rapidly developing area. The authors introduce various weighted spaces, including the classical Hardy space $H^2$, Bergman space $B^2$, and Dirichlet space $\mathcal{D}$. By offering generalized definitions for these spaces, readers are equipped to explore further classes of Banach spaces such as Bloch spaces $\mathcal{B}^p$ and Bergman-type spaces $A^p$. Additionally, the authors extend their analysis beyond the open unit disk $\mathbb{D}$ and open unit ball $\mathbb{B}$ by presenting families of entire functions in the complex plane $\mathbb{C}$ and in higher dimensions. The Theory of $\mathcal{N}_p$ Spaces is an ideal resource for researchers and PhD students studying spaces of analytic functions and operators within these spaces.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Javad Mashreghi is an esteemed mathematician and author renowned for his work in the areas of functional analysis, operator theory, and complex analysis. He has made significant contributions to the study of analytic function spaces and the operators that act upon them. Prof. Mashreghi has held various prestigious positions throughout his career. He served as the 35th President of the Canadian Mathematical Society (CMS) and has been recognized as a Lifetime Fellow of both CMS and the Fields Institute. He currently holds the Canada Research Chair at Université Laval and has also been honored as a Fulbright Research Chair at Vanderbilt University.
Le Hai Khoi is an expert in the fields of function spaces and operator theory, with a particular focus on the representation of functions using series expansions involving exponential functions, rational functions, and Dirichlet series. He has made significant contributions to these areas and has a prolific research output, having published over 80 research papers in the relevant field. Prof. Le Hai Khoi is well-known for his expertise and active involvement in the study of $\mathcal{N}_p$ spaces, which are Banach and Hilbert spaces of analytic functions on the open unit disk and open unit ball.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 17,15 expédition depuis Etats-Unis vers France
Destinations, frais et délaisEUR 9,70 expédition depuis Allemagne vers France
Destinations, frais et délaisVendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This monograph provides a comprehensive study of a typical and novel function space, known as the $mathcal{N}_p$ spaces. These spaces are Banach and Hilbert spaces of analytic functions on the open unit disk and open unit ball, and the authors also explore . N° de réf. du vendeur 895961274
Quantité disponible : Plus de 20 disponibles
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9783031397035_new
Quantité disponible : Plus de 20 disponibles
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This monograph provides a comprehensive study of a typical and novel function space, known as the $mathcal{N}_p$ spaces. These spaces are Banach and Hilbert spaces of analytic functions on the open unit disk and open unit ball, and the authors also explore composition operators and weighted composition operators on these spaces. The book covers a significant portion of the recent research on these spaces, making it an invaluable resource for those delving into this rapidly developing area. The authors introduce various weighted spaces, including the classical Hardy space $H^2$, Bergman space $B^2$, and Dirichlet space $mathcal{D}$. By offering generalized definitions for these spaces, readers are equipped to explore further classes of Banach spaces such as Bloch spaces $mathcal{B}^p$ and Bergman-type spaces $A^p$. Additionally, the authors extend their analysis beyond the open unit disk $mathbb{D}$ and open unit ball $mathbb{B}$ by presenting families of entire functions in the complex plane $mathbb{C}$ and in higher dimensions. The Theory of $mathcal{N}_p$ Spaces is an ideal resource for researchers and PhD students studying spaces of analytic functions and operators within these spaces. N° de réf. du vendeur 9783031397035
Quantité disponible : 1 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This monograph provides a comprehensive study of a typical and novel function space, known as the $mathcal{N}_p$ spaces. These spaces are Banach and Hilbert spaces of analytic functions on the open unit disk and open unit ball, and the authors also explore composition operators and weighted composition operators on these spaces. The book covers a significant portion of the recent research on these spaces, making it an invaluable resource for those delving into this rapidly developing area. The authors introduce various weighted spaces, including the classical Hardy space $H^2$, Bergman space $B^2$, and Dirichlet space $mathcal{D}$. By offering generalized definitions for these spaces, readers are equipped to explore further classes of Banach spaces such as Bloch spaces $mathcal{B}^p$ and Bergman-type spaces $A^p$. Additionally, the authors extend their analysis beyond the open unit disk $mathbb{D}$ and open unit ball $mathbb{B}$ by presenting families of entire functions in the complex plane $mathbb{C}$ and in higher dimensions. The Theory of $mathcal{N}_p$ Spaces is an ideal resource for researchers and PhD students studying spaces of analytic functions and operators within these spaces. 272 pp. Englisch. N° de réf. du vendeur 9783031397035
Quantité disponible : 2 disponible(s)
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9783031397035
Quantité disponible : Plus de 20 disponibles
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - Print on Demand Titel. Neuware -This monograph provides a comprehensive study of a typical and novel function space, known as the $mathcal{N}_p$ spaces. These spaces are Banach and Hilbert spaces of analytic functions on the open unit disk and open unit ball, and the authors also explore composition operators and weighted composition operators on these spaces. The book covers a significant portion of the recent research on these spaces, making it an invaluable resource for those delving into this rapidly developing area. The authors introduce various weighted spaces, including the classical Hardy space $H^2$, Bergman space $B^2$, and Dirichlet space $mathcal{D}$. By offering generalized definitions for these spaces, readers are equipped to explore further classes of Banach spaces such as Bloch spaces $mathcal{B}^p$ and Bergman-type spaces $A^p$. Additionally, the authors extend their analysis beyond the open unit disk $mathbb{D}$ and open unit ball $mathbb{B}$ by presenting families of entire functions in the complex plane $mathbb{C}$ and in higher dimensions. The Theory of $mathcal{N}_p$ Spaces is an ideal resource for researchers and PhD students studying spaces of analytic functions and operators within these spaces.Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 272 pp. Englisch. N° de réf. du vendeur 9783031397035
Quantité disponible : 1 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 46712448-n
Quantité disponible : 15 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 46712448
Quantité disponible : 15 disponible(s)
Vendeur : Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlande
Etat : New. 2023. 2023 ed. paperback. . . . . . N° de réf. du vendeur V9783031397035
Quantité disponible : 15 disponible(s)
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. N° de réf. du vendeur 26396942450
Quantité disponible : 4 disponible(s)