Articles liés à Reshaping Convex Polyhedra

Reshaping Convex Polyhedra - Couverture rigide

 
9783031475108: Reshaping Convex Polyhedra

Synopsis

^ the="" study="" of="" convex="" polyhedra="" in="" ordinary="" space="" is="" a="" central="" piece="" classical="" and="" modern="" geometry="" that="" has="" had="" significant="" impact="" on="" many="" areas="" mathematics="" also="" computer="" science.="" present="" book="" project="" by="" joseph="" o'rourke="" costin="" vîlcu="" brings="" together="" two="" important="" strands="" subject="" -="" combinatorics="" polyhedra, ="" intrinsic="" underlying="" surface.="" this="" leads="" to="" remarkable="" interplay="" concepts="" come="" life="" wide="" range="" very="" attractive="" topics="" concerning="" polyhedra.="" gets="" message="" across="" thetheory="" although="" with="" roots, ="" still="" much="" alive="" today="" continues="" be="" inspiration="" basis="" lot="" current="" research="" activity.="" work="" presented="" manuscript="" interesting="" applications="" discrete="" computational="" geometry, ="" as="" well="" other="" mathematics.="" treated="" detail="" include="" unfolding="" onto="" surfaces, ="" continuous="" flattening="" convexity="" theory="" minimal="" length="" enclosing="" polygons.="" along="" way, ="" open="" problems="" suitable="" for="" graduate="" students="" are="" raised, ="" both="" a

The focus of this monograph is converting-reshaping-one 3D convex polyhedron to another via an operation the authors call "tailoring." A convex polyhedron is a gem-like shape composed of flat facets, the focus of study since Plato and Euclid. The tailoring operation snips off a corner (a "vertex") of a polyhedron and sutures closed the hole. This is akin to Johannes Kepler's "vertex truncation," but differs in that the hole left by a truncated vertex is filled with new surface, whereas tailoring zips the hole closed. A powerful "gluing" theorem of A.D. Alexandrov from 1950 guarantees that, after closing the hole, the result is a new convex polyhedron. Given two convex polyhedra P, and Q inside P, repeated tailoring allows P to be reshaped to Q. Rescaling any Q to fit inside P, the result is universal: any P can be reshaped to any Q. This is one of the main theorems in Part I, with unexpected theoretical consequences.

Part II carries out a systematic study of "vertex-merging," a technique that can be viewed as a type of inverse operation to tailoring. Here the start is P which is gradually enlarged as much as possible, by inserting new surface along slits. In a sense, repeated vertex-merging reshapes P to be closer to planarity. One endpoint of such a process leads to P being cut up and "pasted" inside a cylinder. Then rolling the cylinder on a plane achieves an unfolding of P. The underlying subtext is a question posed by Geoffrey Shephard in 1975 and already implied by drawings by Albrecht Dürer in the 15th century: whether every convex polyhedron can be unfolded to a planar "net." Toward this end, the authors initiate an exploration of convexity on convex polyhedra, a topic rarely studied in the literature but with considerable promise for future development.

This monograph uncovers new research directions and reveals connections among several, apparently distant, topics in geometry: Alexandrov's Gluing Theorem, shortest paths and cut loci, Cauchy's Arm Lemma, domes, quasigeodesics, convexity, and algorithms throughout. The interplay between these topics and the way the main ideas develop throughout the book could make the "journey" worthwhile for students and researchers in geometry, even if not directly interested in specific topics. Parts of the material will be of interest and accessible even to undergraduates. Although the proof difficulty varies from simple to quite intricate, with some proofs spanning several chapters, many examples and 125 figures help ease the exposition and illustrate the concepts.

^>

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

À propos de l?auteur

Joseph O'Rourke is Professor at Smith College. Prior to joining Smith in 1988 to found and chair the computer science department, Joseph O'Rourke was an assistant and then associate professor at Johns Hopkins University. His research is in the field of computational geometry. In 2001, he was awarded the NSF Director's Award for Distinguished Teaching Scholars. He is also a professor of mathematics.

Costin Vîlcu is affiliated with the Simion Stoilow Institute of Mathematics of the Romanian Academy. His research interests include geometry of Alexandrov surfaces and intrinsic geometry of convex surfaces, including polyhedral convex surfaces.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

  • ÉditeurSpringer International Publishing AG
  • Date d'édition2024
  • ISBN 10 3031475100
  • ISBN 13 9783031475108
  • ReliureRelié
  • Langueanglais
  • Nombre de pages243
  • Coordonnées du fabricantnon disponible

Acheter D'occasion

état :  Comme neuf
Unread book in perfect condition...
Afficher cet article
EUR 151,42

Autre devise

EUR 17,45 expédition depuis Etats-Unis vers France

Destinations, frais et délais

Acheter neuf

Afficher cet article
EUR 109,83

Autre devise

EUR 9,70 expédition depuis Allemagne vers France

Destinations, frais et délais

Autres éditions populaires du même titre

9783031475139: Reshaping Convex Polyhedra

Edition présentée

ISBN 10 :  3031475135 ISBN 13 :  9783031475139
Editeur : Springer, 2025
Couverture souple

Résultats de recherche pour Reshaping Convex Polyhedra

Image fournie par le vendeur

O'Rourke, Joseph|Vîlcu, Costin
ISBN 10 : 3031475100 ISBN 13 : 9783031475108
Neuf Couverture rigide
impression à la demande

Vendeur : moluna, Greven, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The focus of this monograph is converting-reshaping-one 3D convex polyhedron to another via an operation the authors call tailoring. A convex polyhedron is a gem-like shape composed of flat facets, the focus of study since Plato and Eucli. N° de réf. du vendeur 1128556351

Contacter le vendeur

Acheter neuf

EUR 109,83
Autre devise
Frais de port : EUR 9,70
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Costin Vîlcu
Edité par Springer Nature Switzerland, 2024
ISBN 10 : 3031475100 ISBN 13 : 9783031475108
Neuf Couverture rigide

Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - The focus of this monograph is converting-reshaping-one 3D convex polyhedron to another via an operation the authors call 'tailoring.' A convex polyhedron is a gem-like shape composed of flat facets, the focus of study since Plato and Euclid. The tailoring operation snips off a corner (a 'vertex') of a polyhedron and sutures closed the hole. This is akin to Johannes Kepler's 'vertex truncation,' but differs in that the hole left by a truncated vertex is filled with new surface, whereas tailoring zips the hole closed. A powerful 'gluing' theorem of A.D. Alexandrov from 1950 guarantees that, after closing the hole, the result is a new convex polyhedron. Given two convex polyhedra P, and Q inside P, repeated tailoringallows P to be reshaped to Q. Rescaling any Q to fit inside P, the result is universal: any P can be reshaped to any Q. This is one of the main theorems in Part I, with unexpected theoretical consequences.Part II carries out a systematic study of 'vertex-merging,' a technique that can be viewed as a type of inverse operation to tailoring. Here the start is P which is gradually enlarged as much as possible, by inserting new surface along slits. In a sense, repeated vertex-merging reshapes P to be closer to planarity. One endpoint of such a process leads to P being cut up and 'pasted' inside a cylinder. Then rolling the cylinder on a plane achieves an unfolding of P. The underlying subtext is a question posed by Geoffrey Shephard in 1975 and already implied by drawings by Albrecht Dürer in the 15th century: whether every convex polyhedron can be unfolded to a planar 'net.' Toward this end, the authors initiate an exploration of convexity on convex polyhedra, a topic rarely studiedin the literature but with considerable promise for future development.This monograph uncovers new research directions and reveals connections among several, apparently distant, topics in geometry: Alexandrov's Gluing Theorem, shortest paths and cut loci, Cauchy's Arm Lemma, domes, quasigeodesics, convexity, and algorithms throughout. The interplay between these topics and the way the main ideas develop throughout the book could make the 'journey' worthwhile for students and researchers in geometry, even if not directly interested in specific topics. Parts of the material will be of interest and accessible even to undergraduates. Although the proof difficulty varies from simple to quite intricate, with some proofs spanning several chapters, many examples and 125 figures help ease the exposition and illustrate the concepts. N° de réf. du vendeur 9783031475108

Contacter le vendeur

Acheter neuf

EUR 128,39
Autre devise
Frais de port : EUR 10,99
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Costin Vîlcu
ISBN 10 : 3031475100 ISBN 13 : 9783031475108
Neuf Buch
impression à la demande

Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The focus of this monograph is converting-reshaping-one 3D convex polyhedron to another via an operation the authors call 'tailoring.' A convex polyhedron is a gem-like shape composed of flat facets, the focus of study since Plato and Euclid. The tailoring operation snips off a corner (a 'vertex') of a polyhedron and sutures closed the hole. This is akin to Johannes Kepler's 'vertex truncation,' but differs in that the hole left by a truncated vertex is filled with new surface, whereas tailoring zips the hole closed. A powerful 'gluing' theorem of A.D. Alexandrov from 1950 guarantees that, after closing the hole, the result is a new convex polyhedron. Given two convex polyhedra P, and Q inside P, repeated tailoringallows P to be reshaped to Q. Rescaling any Q to fit inside P, the result is universal: any P can be reshaped to any Q. This is one of the main theorems in Part I, with unexpected theoretical consequences.Part II carries out a systematic study of 'vertex-merging,' a technique that can be viewed as a type of inverse operation to tailoring. Here the start is P which is gradually enlarged as much as possible, by inserting new surface along slits. In a sense, repeated vertex-merging reshapes P to be closer to planarity. One endpoint of such a process leads to P being cut up and 'pasted' inside a cylinder. Then rolling the cylinder on a plane achieves an unfolding of P. The underlying subtext is a question posed by Geoffrey Shephard in 1975 and already implied by drawings by Albrecht Dürer in the 15th century: whether every convex polyhedron can be unfolded to a planar 'net.' Toward this end, the authors initiate an exploration of convexity on convex polyhedra, a topic rarely studiedin the literature but with considerable promise for future development.This monograph uncovers new research directions and reveals connections among several, apparently distant, topics in geometry: Alexandrov's Gluing Theorem, shortest paths and cut loci, Cauchy's Arm Lemma, domes, quasigeodesics, convexity, and algorithms throughout. The interplay between these topics and the way the main ideas develop throughout the book could make the 'journey' worthwhile for students and researchers in geometry, even if not directly interested in specific topics. Parts of the material will be of interest and accessible even to undergraduates. Although the proof difficulty varies from simple to quite intricate, with some proofs spanning several chapters, many examples and 125 figures help ease the exposition and illustrate the concepts. 260 pp. Englisch. N° de réf. du vendeur 9783031475108

Contacter le vendeur

Acheter neuf

EUR 128,39
Autre devise
Frais de port : EUR 11
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Costin Vîlcu
ISBN 10 : 3031475100 ISBN 13 : 9783031475108
Neuf Couverture rigide

Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. Neuware -The focus of this monograph is converting-reshaping-one 3D convex polyhedron to another via an operation the authors call 'tailoring.' A convex polyhedron is a gem-like shape composed of flat facets, the focus of study since Plato and Euclid. The tailoring operation snips off a corner (a 'vertex') of a polyhedron and sutures closed the hole. This is akin to Johannes Kepler's 'vertex truncation,' but differs in that the hole left by a truncated vertex is filled with new surface, whereas tailoring zips the hole closed. A powerful 'gluing' theorem of A.D. Alexandrov from 1950 guarantees that, after closing the hole, the result is a new convex polyhedron. Given two convex polyhedra P, and Q inside P, repeated tailoring allows P to be reshaped to Q. Rescaling any Q to fit inside P, the result is universal: any P can be reshaped to any Q. This is one of the main theorems in Part I, with unexpected theoretical consequences.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 260 pp. Englisch. N° de réf. du vendeur 9783031475108

Contacter le vendeur

Acheter neuf

EUR 128,39
Autre devise
Frais de port : EUR 15
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image d'archives

O'Rourke, Joseph (Author)/ Vîlcu, Costin (Author)
Edité par Springer, 2024
ISBN 10 : 3031475100 ISBN 13 : 9783031475108
Neuf Couverture rigide
impression à la demande

Vendeur : Revaluation Books, Exeter, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Hardcover. Etat : Brand New. 257 pages. 9.26x6.10x0.75 inches. In Stock. This item is printed on demand. N° de réf. du vendeur __3031475100

Contacter le vendeur

Acheter neuf

EUR 134,32
Autre devise
Frais de port : EUR 11,86
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

O'Rourke, Joseph; Vîlcu, Costin
Edité par Springer, 2024
ISBN 10 : 3031475100 ISBN 13 : 9783031475108
Neuf Couverture rigide

Vendeur : California Books, Miami, FL, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur I-9783031475108

Contacter le vendeur

Acheter neuf

EUR 139,38
Autre devise
Frais de port : EUR 6,98
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

O'Rourke, Joseph; Vîlcu, Costin
Edité par Springer, 2024
ISBN 10 : 3031475100 ISBN 13 : 9783031475108
Neuf Couverture rigide

Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. In. N° de réf. du vendeur ria9783031475108_new

Contacter le vendeur

Acheter neuf

EUR 144,61
Autre devise
Frais de port : EUR 4,73
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

O'Rourke, Joseph; Vi^lcu, Costin
Edité par Springer, 2024
ISBN 10 : 3031475100 ISBN 13 : 9783031475108
Neuf Couverture rigide

Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 46841175-n

Contacter le vendeur

Acheter neuf

EUR 137
Autre devise
Frais de port : EUR 17,45
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

O'Rourke, Joseph; Vi^lcu, Costin
Edité par Springer, 2024
ISBN 10 : 3031475100 ISBN 13 : 9783031475108
Neuf Couverture rigide

Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 46841175-n

Contacter le vendeur

Acheter neuf

EUR 141,89
Autre devise
Frais de port : EUR 17,78
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

O'Rourke, Joseph; Vi^lcu, Costin
Edité par Springer, 2024
ISBN 10 : 3031475100 ISBN 13 : 9783031475108
Ancien ou d'occasion Couverture rigide

Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 46841175

Contacter le vendeur

Acheter D'occasion

EUR 151,42
Autre devise
Frais de port : EUR 17,45
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

There are 4 autres exemplaires de ce livre sont disponibles

Afficher tous les résultats pour ce livre