Articles liés à Validity, Reliability, and Significance: Empirical...

Validity, Reliability, and Significance: Empirical Methods for Nlp and Data Science: Empirical Methods for Nlp and Data Science - Couverture rigide

 
9783031570643: Validity, Reliability, and Significance: Empirical Methods for Nlp and Data Science: Empirical Methods for Nlp and Data Science

Synopsis

This book introduces empirical methods for machine learning with a special focus on applications in natural language processing (NLP) and data science. The authors present problems of validity, reliability, and significance and provide common solutions based on statistical methodology to solve them. The book focuses on model-based empirical methods where data annotations and model predictions are treated as training data for interpretable probabilistic models from the well-understood families of generalized additive models (GAMs) and linear mixed effects models (LMEMs). Based on the interpretable parameters of the trained GAMs or LMEMs, the book presents model-based statistical tests such as a validity test that allows for the detection of circular features that circumvent learning. Furthermore, the book discusses a reliability coefficient using variance decomposition based on random effect parameters of LMEMs. Lastly, a significance test based on the likelihood ratios of nested LMEMs trained on the performance scores of two machine learning models is shown to naturally allow the inclusion of variations in meta-parameter settings into hypothesis testing, and further facilitates a refined system comparison conditional on properties of input data. The book is self-contained with an appendix on the mathematical background of generalized additive models and linear mixed effects models as well as an accompanying webpage with the related R and Python code to replicate the presented experiments. The second edition also features a new hands-on chapter that illustrates how to use the included tools in practical applications.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

À propos de l?auteur

Stefan Riezler is a full professor in the Department of Computational Linguistics at Heidelberg University, Germany since 2010, and also co-opted in Informatics at the Department of Mathematics and Computer Science. He received his Ph.D. (with distinction) in Computational Linguistics from the University of Tübingen in 1998, conducted post-doctoral work at Brown University in 1999, and spent a decade in industry research (Xerox PARC, Google Research). His research focus is on inter-active machine learning for natural language processing problems especially for the application areas of cross-lingual information retrieval and statistical machine trans-lation. He is engaged as an editorial board member of the main journals of the field--Computational Linguistics and Transactions of the Association for Computational Linguistics--and is a regular member of the program committee of various natural language processing and machine learning conferences.He has published more than 100 journal and conference papers in these areas. He also conducts interdisciplinary research as member of the Interdisciplinary Center for Scientific Computing (IWR), for example, on the topic of early prediction of sepsis using machine learning and natural language processing techniques.

Michael Hagmann is a graduate research assistant in the Department of Computational Linguistics at Heidelberg University, Germany, since 2019. He received an M.Sc. in Statistics (with distinction) from the University of Vienna, Austria in 2016, and a Ph.D. in Computational Linguistics from Heidelberg University in 2023. He received an award for the best Master's thesis in Applied Statistics from the Austrian Statistical Society. He has worked as a medical statistician at the medical faculty of Heidelberg University in Mannheim, Germany and in the section for Medical Statistics at the Medical University of Vienna, Austria. His research focus is on statistical methods for data science and, recently, NLP. He has published more than 50 papers in journals for medical research and mathematical statistics.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

  • ÉditeurSpringer International Publishing AG
  • Date d'édition2024
  • ISBN 10 3031570642
  • ISBN 13 9783031570643
  • ReliureRelié
  • Langueanglais
  • Numéro d'édition2
  • Nombre de pages168
  • Coordonnées du fabricantnon disponible

Acheter neuf

Afficher cet article
EUR 38,69

Autre devise

EUR 9,70 expédition depuis Allemagne vers France

Destinations, frais et délais

Résultats de recherche pour Validity, Reliability, and Significance: Empirical...

Image fournie par le vendeur

Riezler, Stefan|Hagmann, Michael
ISBN 10 : 3031570642 ISBN 13 : 9783031570643
Neuf Couverture rigide

Vendeur : moluna, Greven, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 1407956899

Contacter le vendeur

Acheter neuf

EUR 38,69
Autre devise
Frais de port : EUR 9,70
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Michael Hagmann
Edité par Springer Nature Switzerland, 2024
ISBN 10 : 3031570642 ISBN 13 : 9783031570643
Neuf Couverture rigide

Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This book introduces empirical methods for machine learning with a special focus on applications in natural language processing (NLP) and data science. The authors present problems of validity, reliability, and significance and provide common solutions based on statistical methodology to solve them. The book focuses on model-based empirical methods where data annotations and model predictions are treated as training data for interpretable probabilistic models from the well-understood families of generalized additive models (GAMs) and linear mixed effects models (LMEMs). Based on the interpretable parameters of the trained GAMs or LMEMs, the book presents model-based statistical tests such as a validity test that allows for the detection of circular features that circumvent learning. Furthermore, the book discusses a reliability coefficient using variance decomposition based on random effect parameters of LMEMs. Lastly, a significance test based on the likelihood ratios of nested LMEMs trained on the performance scores of two machine learning models is shown to naturally allow the inclusion of variations in meta-parameter settings into hypothesis testing, and further facilitates a refined system comparison conditional on properties of input data. The book is self-contained with an appendix on the mathematical background of generalized additive models and linear mixed effects models as well as an accompanying webpage with the related R and Python code to replicate the presented experiments.The second edition also features a new hands-on chapter that illustrates how to use the included tools in practical applications. N° de réf. du vendeur 9783031570643

Contacter le vendeur

Acheter neuf

EUR 42,79
Autre devise
Frais de port : EUR 10,99
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Stefan Riezler
ISBN 10 : 3031570642 ISBN 13 : 9783031570643
Neuf Couverture rigide
impression à la demande

Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book introduces empirical methods for machine learning with a special focus on applications in natural language processing (NLP) and data science. The authors present problems of validity, reliability, and significance and provide common solutions based on statistical methodology to solve them. The book focuses on model-based empirical methods where data annotations and model predictions are treated as training data for interpretable probabilistic models from the well-understood families of generalized additive models (GAMs) and linear mixed effects models (LMEMs). Based on the interpretable parameters of the trained GAMs or LMEMs, the book presents model-based statistical tests such as a validity test that allows for the detection of circular features that circumvent learning. Furthermore, the book discusses a reliability coefficient using variance decomposition based on random effect parameters of LMEMs. Lastly, a significance test based on the likelihood ratios of nested LMEMs trained on the performance scores of two machine learning models is shown to naturally allow the inclusion of variations in meta-parameter settings into hypothesis testing, and further facilitates a refined system comparison conditional on properties of input data. The book is self-contained with an appendix on the mathematical background of generalized additive models and linear mixed effects models as well as an accompanying webpage with the related R and Python code to replicate the presented experiments.The second edition also features a new hands-on chapter that illustrates how to use the included tools in practical applications. 168 pp. Englisch. N° de réf. du vendeur 9783031570643

Contacter le vendeur

Acheter neuf

EUR 42,79
Autre devise
Frais de port : EUR 11
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Michael Hagmann
ISBN 10 : 3031570642 ISBN 13 : 9783031570643
Neuf Couverture rigide

Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. Neuware -This book introduces empirical methods for machine learning with a special focus on applications in natural language processing (NLP) and data science. The authors present problems of validity, reliability, and significance and provide common solutions based on statistical methodology to solve them. The book focuses on model-based empirical methods where data annotations and model predictions are treated as training data for interpretable probabilistic models from the well-understood families of generalized additive models (GAMs) and linear mixed effects models (LMEMs). Based on the interpretable parameters of the trained GAMs or LMEMs, the book presents model-based statistical tests such as a validity test that allows for the detection of circular features that circumvent learning. Furthermore, the book discusses a reliability coefficient using variance decomposition based on random effect parameters of LMEMs. Lastly, a significance test based on the likelihood ratios of nested LMEMs trained on the performance scores of two machine learning models is shown to naturally allow the inclusion of variations in meta-parameter settings into hypothesis testing, and further facilitates a refined system comparison conditional on properties of input data. The book is self-contained with an appendix on the mathematical background of generalized additive models and linear mixed effects models as well as an accompanying webpage with the related R and Python code to replicate the presented experiments. The second edition also features a new hands-on chapter that illustrates how to use the included tools in practical applications.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 188 pp. Englisch. N° de réf. du vendeur 9783031570643

Contacter le vendeur

Acheter neuf

EUR 42,79
Autre devise
Frais de port : EUR 15
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image d'archives

Riezler, Stefan; Hagmann, Michael
Edité par Springer, 2024
ISBN 10 : 3031570642 ISBN 13 : 9783031570643
Neuf Couverture rigide

Vendeur : Books Puddle, New York, NY, Etats-Unis

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Second Edition 2024 NO-PA16APR2015-KAP. N° de réf. du vendeur 26402088111

Contacter le vendeur

Acheter neuf

EUR 62,55
Autre devise
Frais de port : EUR 7,89
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 4 disponible(s)

Ajouter au panier

Image d'archives

Riezler, Stefan; Hagmann, Michael
Edité par Springer, 2024
ISBN 10 : 3031570642 ISBN 13 : 9783031570643
Neuf Couverture rigide
impression à la demande

Vendeur : Majestic Books, Hounslow, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Print on Demand. N° de réf. du vendeur 394321776

Contacter le vendeur

Acheter neuf

EUR 62,02
Autre devise
Frais de port : EUR 10,50
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 4 disponible(s)

Ajouter au panier

Image d'archives

Riezler, Stefan; Hagmann, Michael
Edité par Springer, 2024
ISBN 10 : 3031570642 ISBN 13 : 9783031570643
Neuf Couverture rigide
impression à la demande

Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. PRINT ON DEMAND. N° de réf. du vendeur 18402088101

Contacter le vendeur

Acheter neuf

EUR 64,75
Autre devise
Frais de port : EUR 7,95
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 4 disponible(s)

Ajouter au panier

Image d'archives

Riezler, Stefan/ Hagmann, Michael
Edité par Springer-Nature New York Inc, 2024
ISBN 10 : 3031570642 ISBN 13 : 9783031570643
Neuf Couverture rigide

Vendeur : Revaluation Books, Exeter, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Hardcover. Etat : Brand New. 2nd edition. 185 pages. 9.44x6.61x9.69 inches. In Stock. N° de réf. du vendeur x-3031570642

Contacter le vendeur

Acheter neuf

EUR 68,68
Autre devise
Frais de port : EUR 11,87
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image d'archives

Stefan Riezler
ISBN 10 : 3031570642 ISBN 13 : 9783031570643
Neuf Couverture rigide

Vendeur : Grand Eagle Retail, Fairfield, OH, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Hardcover. Etat : new. Hardcover. This book introduces empirical methods for machine learning with a special focus on applications in natural language processing (NLP) and data science. The authors present problems of validity, reliability, and significance and provide common solutions based on statistical methodology to solve them. The book focuses on model-based empirical methods where data annotations and model predictions are treated as training data for interpretable probabilistic models from the well-understood families of generalized additive models (GAMs) and linear mixed effects models (LMEMs). Based on the interpretable parameters of the trained GAMs or LMEMs, the book presents model-based statistical tests such as a validity test that allows for the detection of circular features that circumvent learning. Furthermore, the book discusses a reliability coefficient using variance decomposition based on random effect parameters of LMEMs. Lastly, a significance test based on the likelihood ratios of nested LMEMs trained on the performance scores of two machine learning models is shown to naturally allow the inclusion of variations in meta-parameter settings into hypothesis testing, and further facilitates a refined system comparison conditional on properties of input data. The book is self-contained with an appendix on the mathematical background of generalized additive models and linear mixed effects models as well as an accompanying webpage with the related R and Python code to replicate the presented experiments. The second edition also features a new hands-on chapter that illustrates how to use the included tools in practical applications. The book focuses on model-based empirical methods where data annotations and model predictions are treated as training data for interpretable probabilistic models from the well-understood families of generalized additive models (GAMs) and linear mixed effects models (LMEMs). Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9783031570643

Contacter le vendeur

Acheter neuf

EUR 57,01
Autre devise
Frais de port : EUR 65,75
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier