Articles liés à Statistical Learning Tools for Electricity Load Forecasting

Statistical Learning Tools for Electricity Load Forecasting - Couverture rigide

 
9783031603389: Statistical Learning Tools for Electricity Load Forecasting

Synopsis

This monograph explores a set of statistical and machine learning tools that can be effectively utilized for applied data analysis in the context of electricity load forecasting.  Drawing on their substantial research and experience with forecasting electricity demand in industrial settings, the authors guide readers through several modern forecasting methods and tools from both industrial and applied perspectives – generalized additive models (GAMs), probabilistic GAMs, functional time series and wavelets, random forests, aggregation of experts, and mixed effects models.  A collection of case studies based on sizable high-resolution datasets, together with relevant R packages, then illustrate the implementation of these techniques.  Five real datasets at three different levels of aggregation (nation-wide, region-wide, or individual) from four different countries (UK, France, Ireland, and the USA) are utilized to study five problems: short-term point-wise forecasting, selection of relevant variables for prediction, construction of prediction bands, peak demand prediction, and use of individual consumer data.

This text is intended for practitioners, researchers, and post-graduate students working on electricity load forecasting; it may also be of interest to applied academics or scientists wanting to learn about cutting-edge forecasting tools for application in other areas.  Readers are assumed to be familiar with standard statistical concepts such as random variables, probability density functions, and expected values, and to possess some minimal modeling experience.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

Acheter neuf

Afficher cet article
EUR 90,94

Autre devise

EUR 23 expédition depuis Allemagne vers Etats-Unis

Destinations, frais et délais

Résultats de recherche pour Statistical Learning Tools for Electricity Load Forecasting

Image fournie par le vendeur

Anestis Antoniadis
ISBN 10 : 3031603389 ISBN 13 : 9783031603389
Neuf Couverture rigide
impression à la demande

Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This monograph explores a set of statistical and machine learning tools that can be effectively utilized for applied data analysis in the context of electricity load forecasting. Drawing on their substantial research and experience with forecasting electricity demand in industrial settings, the authors guide readers through several modern forecasting methods and tools from both industrial and applied perspectives - generalized additive models (GAMs), probabilistic GAMs, functional time series and wavelets, random forests, aggregation of experts, and mixed effects models. A collection of case studies based on sizable high-resolution datasets, together with relevant R packages, then illustrate the implementation of these techniques. Five real datasets at three different levels of aggregation (nation-wide, region-wide, or individual) from four different countries (UK, France, Ireland, and the USA) are utilized to study five problems: short-term point-wise forecasting, selection of relevant variables for prediction, construction of prediction bands, peak demand prediction, and use of individual consumer data.This text is intended for practitioners, researchers, and post-graduate students working on electricity load forecasting; it may also be of interest to applied academics or scientists wanting to learn about cutting-edge forecasting tools for application in other areas. Readers are assumed to be familiar with standard statistical concepts such as random variables, probability density functions, and expected values, and to possess some minimal modeling experience. 244 pp. Englisch. N° de réf. du vendeur 9783031603389

Contacter le vendeur

Acheter neuf

EUR 90,94
Autre devise
Frais de port : EUR 23
De Allemagne vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image d'archives

Anestis Antoniadis
Edité par Birkhauser Verlag AG, Basel, 2024
ISBN 10 : 3031603389 ISBN 13 : 9783031603389
Neuf Couverture rigide

Vendeur : Grand Eagle Retail, Bensenville, IL, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Hardcover. Etat : new. Hardcover. This monograph explores a set of statistical and machine learning tools that can be effectively utilized for applied data analysis in the context of electricity load forecasting. Drawing on their substantial research and experience with forecasting electricity demand in industrial settings, the authors guide readers through several modern forecasting methods and tools from both industrial and applied perspectives generalized additive models (GAMs), probabilistic GAMs, functional time series and wavelets, random forests, aggregation of experts, and mixed effects models. A collection of case studies based on sizable high-resolution datasets, together with relevant R packages, then illustrate the implementation of these techniques. Five real datasets at three different levels of aggregation (nation-wide, region-wide, or individual) from four different countries (UK, France, Ireland, and the USA) are utilized to study five problems: short-term point-wise forecasting, selection of relevant variables for prediction, construction of prediction bands, peak demand prediction, and use of individual consumer data.This text is intended for practitioners, researchers, and post-graduate students working on electricity load forecasting; it may also be of interest to applied academics or scientists wanting to learn about cutting-edge forecasting tools for application in other areas. Readers are assumed to be familiar with standard statistical concepts such as random variables, probability density functions, and expected values, and to possess some minimal modeling experience. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9783031603389

Contacter le vendeur

Acheter neuf

EUR 120,16
Autre devise
Frais de port : Gratuit
Vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Antoniadis, Anestis; Cugliari, Jairo; Fasiolo, Matteo; Goude, Yannig; Poggi, Jean-Michel
Edité par Birkhäuser, 2024
ISBN 10 : 3031603389 ISBN 13 : 9783031603389
Neuf Couverture rigide

Vendeur : Books Puddle, New York, NY, Etats-Unis

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. 2024th edition NO-PA16APR2015-KAP. N° de réf. du vendeur 26401662375

Contacter le vendeur

Acheter neuf

EUR 118,38
Autre devise
Frais de port : EUR 3,41
Vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 4 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Antoniadis, Anestis|Cugliari, Jairo|Fasiolo, Matteo|Goude, Yannig|Poggi, Jean-Michel
ISBN 10 : 3031603389 ISBN 13 : 9783031603389
Neuf Couverture rigide

Vendeur : moluna, Greven, Allemagne

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 1571794509

Contacter le vendeur

Acheter neuf

EUR 79,10
Autre devise
Frais de port : EUR 48,99
De Allemagne vers Etats-Unis
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Antoniadis, Anestis; Cugliari, Jairo; Fasiolo, Matteo; Goude, Yannig; Poggi, Jean-Michel
Edité par Birkhäuser, 2024
ISBN 10 : 3031603389 ISBN 13 : 9783031603389
Neuf Couverture rigide
impression à la demande

Vendeur : Majestic Books, Hounslow, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Print on Demand. N° de réf. du vendeur 394747512

Contacter le vendeur

Acheter neuf

EUR 123,82
Autre devise
Frais de port : EUR 7,47
De Royaume-Uni vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 4 disponible(s)

Ajouter au panier

Image d'archives

Antoniadis, Anestis; Cugliari, Jairo; Fasiolo, Matteo; Goude, Yannig; Poggi, Jean-Michel
Edité par Birkhäuser, 2024
ISBN 10 : 3031603389 ISBN 13 : 9783031603389
Neuf Couverture rigide
impression à la demande

Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. PRINT ON DEMAND. N° de réf. du vendeur 18401662381

Contacter le vendeur

Acheter neuf

EUR 127,05
Autre devise
Frais de port : EUR 9,95
De Allemagne vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 4 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Anestis Antoniadis
ISBN 10 : 3031603389 ISBN 13 : 9783031603389
Neuf Couverture rigide

Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. Neuware -This monograph explores a set of statistical and machine learning tools that can be effectively utilized for applied data analysis in the context of electricity load forecasting. Drawing on their substantial research and experience with forecasting electricity demand in industrial settings, the authors guide readers through several modern forecasting methods and tools from both industrial and applied perspectives ¿ generalized additive models (GAMs), probabilistic GAMs, functional time series and wavelets, random forests, aggregation of experts, and mixed effects models. A collection of case studies based on sizable high-resolution datasets, together with relevant R packages, then illustrate the implementation of these techniques. Five real datasets at three different levels of aggregation (nation-wide, region-wide, or individual) from four different countries (UK, France, Ireland, and the USA) are utilized to study five problems: short-term point-wise forecasting, selection of relevant variables for prediction, construction of prediction bands, peak demand prediction, and use of individual consumer data.This text is intended for practitioners, researchers, and post-graduate students working on electricity load forecasting; it may also be of interest to applied academics or scientists wanting to learn about cutting-edge forecasting tools for application in other areas. Readers are assumed to be familiar with standard statistical concepts such as random variables, probability density functions, and expected values, and to possess some minimal modeling experience.Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 244 pp. Englisch. N° de réf. du vendeur 9783031603389

Contacter le vendeur

Acheter neuf

EUR 90,94
Autre devise
Frais de port : EUR 60
De Allemagne vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Anestis Antoniadis
ISBN 10 : 3031603389 ISBN 13 : 9783031603389
Neuf Couverture rigide

Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This monograph explores a set of statistical and machine learning tools that can be effectively utilized for applied data analysis in the context of electricity load forecasting. Drawing on their substantial research and experience with forecasting electricity demand in industrial settings, the authors guide readers through several modern forecasting methods and tools from both industrial and applied perspectives - generalized additive models (GAMs), probabilistic GAMs, functional time series and wavelets, random forests, aggregation of experts, and mixed effects models. A collection of case studies based on sizable high-resolution datasets, together with relevant R packages, then illustrate the implementation of these techniques. Five real datasets at three different levels of aggregation (nation-wide, region-wide, or individual) from four different countries (UK, France, Ireland, and the USA) are utilized to study five problems: short-term point-wise forecasting, selection of relevant variables for prediction, construction of prediction bands, peak demand prediction, and use of individual consumer data.This text is intended for practitioners, researchers, and post-graduate students working on electricity load forecasting; it may also be of interest to applied academics or scientists wanting to learn about cutting-edge forecasting tools for application in other areas. Readers are assumed to be familiar with standard statistical concepts such as random variables, probability density functions, and expected values, and to possess some minimal modeling experience. N° de réf. du vendeur 9783031603389

Contacter le vendeur

Acheter neuf

EUR 90,94
Autre devise
Frais de port : EUR 62,68
De Allemagne vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Antoniadis, Anestis/ Cugliari, Jairo/ Fasiolo, Matteo/ Goude, Yannig/ Poggi, Jean-michel
Edité par Birkhauser, 2024
ISBN 10 : 3031603389 ISBN 13 : 9783031603389
Neuf Couverture rigide

Vendeur : Revaluation Books, Exeter, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Hardcover. Etat : Brand New. 240 pages. 9.25x6.10x9.49 inches. In Stock. N° de réf. du vendeur x-3031603389

Contacter le vendeur

Acheter neuf

EUR 139,01
Autre devise
Frais de port : EUR 28,73
De Royaume-Uni vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier