Articles liés à Deep Learning for Polymer Discovery: Foundation and...

Deep Learning for Polymer Discovery: Foundation and Advances - Couverture rigide

 
9783031847318: Deep Learning for Polymer Discovery: Foundation and Advances

Synopsis

This book presents a comprehensive range of topics in deep learning for polymer discovery, from fundamental concepts to advanced methodologies. These topics are crucial as they address critical challenges in polymer science and engineering. With a growing demand for new materials with specific properties, traditional experimental methods for polymer discovery are becoming increasingly time-consuming and costly. Deep learning offers a promising solution by enabling rapid screening of potential polymers and accelerating the design process. The authors begin with essential knowledge on polymer data representations and neural network architectures, then progress to deep learning frameworks for property prediction and inverse polymer design. The book then explores both sequence-based and graph-based approaches, covering various neural network types including LSTMs, GRUs, GCNs, and GINs. Advanced topics include interpretable graph deep learning with environment-based augmentation, semi-supervised techniques for addressing label imbalance, and data-centric transfer learning using diffusion models. The book aims to solve key problems in polymer discovery, including accurate property prediction, efficient design of polymers with desired characteristics, model interpretability, handling imbalanced and limited labeled data, and leveraging unlabeled data to improve prediction accuracy.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

À propos de l?auteur

Gang Liu is a 4th year Ph.D. student in the Department of Computer Science and Engineering at the University of Notre Dame. His research focuses on graph and generative learning for polymeric material discovery. He has over ten publications in top data mining and machine learning venues, including KDD, NeurIPS, ICML, DAC, ACL, TKDE, and TKDD. His methods have contributed to the discovery of new polymers, with findings published in Cell Reports Physical Science and secured by a provisional patent. He receives the 2024-2025 IBM PhD Fellowship for his work on Foundation Models.

Eric Inae is a 3rd year Ph.D. student in the Department of Computer Science and Engineering at the University of Notre Dame. He received his B.S. in Computer Science and B.S in Mathematics from Andrews University in 2022. His research emphasis is in graph machine learning with applications in material discovery and polymer science. He was awarded with the Dean's Fellowship from the University of Notre Dame.

Meng Jiang, Ph.D., is an Associate Professor in the Department of Computer Science and Engineering at the University of Notre Dame. He received his B.E. and Ph.D. from Tsinghua University. He was a visiting scholar at Carnegie Mellon University and a postdoc at the University of Illinois Urbana-Champaign. He is interested in data mining, machine learning, and natural language processing. His data science research focuses on graph and text data for applications such as material discovery, question answering, user modeling, online education, and mental healthcare. He received the CAREER Award from the National Science Foundation and is a Senior Member of ACM and IEEE.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Acheter D'occasion

état :  Comme neuf
Unread book in perfect condition...
Afficher cet article
EUR 49,69

Autre devise

EUR 2,26 expédition vers Etats-Unis

Destinations, frais et délais

Acheter neuf

Afficher cet article
EUR 38,22

Autre devise

EUR 5,50 expédition depuis Italie vers Etats-Unis

Destinations, frais et délais

Résultats de recherche pour Deep Learning for Polymer Discovery: Foundation and...

Image d'archives

Liu, Gang
Edité par Springer, 2025
ISBN 10 : 3031847318 ISBN 13 : 9783031847318
Neuf Couverture rigide
impression à la demande

Vendeur : Brook Bookstore On Demand, Napoli, NA, Italie

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : new. Questo è un articolo print on demand. N° de réf. du vendeur 1WHAIIJJ8N

Contacter le vendeur

Acheter neuf

EUR 38,22
Autre devise
Frais de port : EUR 5,50
De Italie vers Etats-Unis
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Liu, Gang; Inae, Eric; Jiang, Meng
Edité par Springer, 2025
ISBN 10 : 3031847318 ISBN 13 : 9783031847318
Neuf Couverture rigide

Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 50261937-n

Contacter le vendeur

Acheter neuf

EUR 43,48
Autre devise
Frais de port : EUR 2,26
Vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 15 disponible(s)

Ajouter au panier

Image d'archives

Gang Liu
ISBN 10 : 3031847318 ISBN 13 : 9783031847318
Neuf Couverture rigide

Vendeur : Grand Eagle Retail, Bensenville, IL, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Hardcover. Etat : new. Hardcover. This book presents a comprehensive range of topics in deep learning for polymer discovery, from fundamental concepts to advanced methodologies. These topics are crucial as they address critical challenges in polymer science and engineering. With a growing demand for new materials with specific properties, traditional experimental methods for polymer discovery are becoming increasingly time-consuming and costly. Deep learning offers a promising solution by enabling rapid screening of potential polymers and accelerating the design process. The authors begin with essential knowledge on polymer data representations and neural network architectures, then progress to deep learning frameworks for property prediction and inverse polymer design. The book then explores both sequence-based and graph-based approaches, covering various neural network types including LSTMs, GRUs, GCNs, and GINs. Advanced topics include interpretable graph deep learning with environment-based augmentation, semi-supervised techniques for addressing label imbalance, and data-centric transfer learning using diffusion models. The book aims to solve key problems in polymer discovery, including accurate property prediction, efficient design of polymers with desired characteristics, model interpretability, handling imbalanced and limited labeled data, and leveraging unlabeled data to improve prediction accuracy. This book presents a comprehensive range of topics in deep learning for polymer discovery, from fundamental concepts to advanced methodologies. The authors begin with essential knowledge on polymer data representations and neural network architectures, then progress to deep learning frameworks for property prediction and inverse polymer design. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9783031847318

Contacter le vendeur

Acheter neuf

EUR 45,81
Autre devise
Frais de port : Gratuit
Vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Liu, Gang; Inae, Eric; Jiang, Meng
Edité par Springer, 2025
ISBN 10 : 3031847318 ISBN 13 : 9783031847318
Neuf Couverture rigide

Vendeur : California Books, Miami, FL, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur I-9783031847318

Contacter le vendeur

Acheter neuf

EUR 49,30
Autre devise
Frais de port : Gratuit
Vers Etats-Unis
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Liu, Gang; Inae, Eric; Jiang, Meng
Edité par Springer, 2025
ISBN 10 : 3031847318 ISBN 13 : 9783031847318
Ancien ou d'occasion Couverture rigide

Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 50261937

Contacter le vendeur

Acheter D'occasion

EUR 49,69
Autre devise
Frais de port : EUR 2,26
Vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 15 disponible(s)

Ajouter au panier

Image d'archives

Liu, Gang; Inae, Eric; Jiang, Meng
Edité par Springer, 2025
ISBN 10 : 3031847318 ISBN 13 : 9783031847318
Neuf Couverture rigide

Vendeur : Books Puddle, New York, NY, Etats-Unis

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 26403685167

Contacter le vendeur

Acheter neuf

EUR 58,50
Autre devise
Frais de port : EUR 3,41
Vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 4 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Gang Liu
ISBN 10 : 3031847318 ISBN 13 : 9783031847318
Neuf Couverture rigide
impression à la demande

Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book presents a comprehensive range of topics in deep learning for polymer discovery, from fundamental concepts to advanced methodologies. These topics are crucial as they address critical challenges in polymer science and engineering. With a growing demand for new materials with specific properties, traditional experimental methods for polymer discovery are becoming increasingly time-consuming and costly. Deep learning offers a promising solution by enabling rapid screening of potential polymers and accelerating the design process. The authors begin with essential knowledge on polymer data representations and neural network architectures, then progress to deep learning frameworks for property prediction and inverse polymer design. The book then explores both sequence-based and graph-based approaches, covering various neural network types including LSTMs, GRUs, GCNs, and GINs. Advanced topics include interpretable graph deep learning with environment-based augmentation, semi-supervised techniques for addressing label imbalance, and data-centric transfer learning using diffusion models. The book aims to solve key problems in polymer discovery, including accurate property prediction, efficient design of polymers with desired characteristics, model interpretability, handling imbalanced and limited labeled data, and leveraging unlabeled data to improve prediction accuracy. 123 pp. Englisch. N° de réf. du vendeur 9783031847318

Contacter le vendeur

Acheter neuf

EUR 42,79
Autre devise
Frais de port : EUR 23
De Allemagne vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image d'archives

Liu, Gang; Inae, Eric; Jiang, Meng
Edité par Springer, 2025
ISBN 10 : 3031847318 ISBN 13 : 9783031847318
Neuf Couverture rigide
impression à la demande

Vendeur : Majestic Books, Hounslow, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Print on Demand. N° de réf. du vendeur 410517744

Contacter le vendeur

Acheter neuf

EUR 59,04
Autre devise
Frais de port : EUR 7,47
De Royaume-Uni vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 4 disponible(s)

Ajouter au panier

Image d'archives

Liu, Gang; Inae, Eric; Jiang, Meng
Edité par Springer, 2025
ISBN 10 : 3031847318 ISBN 13 : 9783031847318
Neuf Couverture rigide
impression à la demande

Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. PRINT ON DEMAND. N° de réf. du vendeur 18403685157

Contacter le vendeur

Acheter neuf

EUR 61,26
Autre devise
Frais de port : EUR 9,95
De Allemagne vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 4 disponible(s)

Ajouter au panier

Image d'archives

Liu, Gang/ Inae, Eric/ Jiang, Meng
Edité par Springer-Nature New York Inc, 2025
ISBN 10 : 3031847318 ISBN 13 : 9783031847318
Neuf Couverture rigide

Vendeur : Revaluation Books, Exeter, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Hardcover. Etat : Brand New. 135 pages. 9.44x6.61x9.61 inches. In Stock. N° de réf. du vendeur x-3031847318

Contacter le vendeur

Acheter neuf

EUR 65,11
Autre devise
Frais de port : EUR 28,73
De Royaume-Uni vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

There are 4 autres exemplaires de ce livre sont disponibles

Afficher tous les résultats pour ce livre