The primary aim of XAI is to enhance the transparency and comprehensibility of deep learning model decision-making processes for stakeholders, irrespective of their technical expertise.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Vendeur : Brook Bookstore On Demand, Napoli, NA, Italie
Etat : new. Questo è un articolo print on demand. N° de réf. du vendeur IJAR77TZUH
Quantité disponible : Plus de 20 disponibles
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Buch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book is a comprehensive resource that delves into the integration of advanced artificial intelligence techniques within the context of modern industrial practices. It systematically explores how distributed deep learning methodologies can be effectively combined with explainable AI to enhance transparency in Industry 4.0 applications. In recent years, neural networks and other deep learning models have produced remarkable outcomes in a variety of fields, including image recognition, natural language processing, and decision-making. Concerns have been raised regarding the transparency and interpretability of these models as a result of their increasing intricacy. The demand for methodologies and approaches associated with explainable artificial intelligence (XAI) has consequently increased. The primary aim of XAI is to enhance the transparency and comprehensibility of deep learning model decision-making processes for stakeholders, irrespective of their technical expertise. 424 pp. Englisch. N° de réf. du vendeur 9783031946363
Quantité disponible : 2 disponible(s)
Vendeur : Grand Eagle Retail, Bensenville, IL, Etats-Unis
Hardcover. Etat : new. Hardcover. This book is a comprehensive resource that delves into the integration of advanced artificial intelligence techniques within the context of modern industrial practices. It systematically explores how distributed deep learning methodologies can be effectively combined with explainable AI to enhance transparency in Industry 4.0 applications. In recent years, neural networks and other deep learning models have produced remarkable outcomes in a variety of fields, including image recognition, natural language processing, and decision-making. Concerns have been raised regarding the transparency and interpretability of these models as a result of their increasing intricacy. The demand for methodologies and approaches associated with explainable artificial intelligence (XAI) has consequently increased. The primary aim of XAI is to enhance the transparency and comprehensibility of deep learning model decision-making processes for stakeholders, irrespective of their technical expertise. The primary aim of XAI is to enhance the transparency and comprehensibility of deep learning model decision-making processes for stakeholders, irrespective of their technical expertise. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9783031946363
Quantité disponible : 1 disponible(s)
Vendeur : preigu, Osnabrück, Allemagne
Buch. Etat : Neu. Distributed Deep Learning and Explainable AI (XAI) in Industry 4.0 | Lalitha Krishnasamy (u. a.) | Buch | vi | Englisch | 2025 | Springer | EAN 9783031946363 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand. N° de réf. du vendeur 134146290
Quantité disponible : 5 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Buch. Etat : Neu. This item is printed on demand - Print on Demand Titel. Neuware Springer-Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 432 pp. Englisch. N° de réf. du vendeur 9783031946363
Quantité disponible : 1 disponible(s)
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Buch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This book is a comprehensive resource that delves into the integration of advanced artificial intelligence techniques within the context of modern industrial practices. It systematically explores how distributed deep learning methodologies can be effectively combined with explainable AI to enhance transparency in Industry 4.0 applications. In recent years, neural networks and other deep learning models have produced remarkable outcomes in a variety of fields, including image recognition, natural language processing, and decision-making. Concerns have been raised regarding the transparency and interpretability of these models as a result of their increasing intricacy. The demand for methodologies and approaches associated with explainable artificial intelligence (XAI) has consequently increased. The primary aim of XAI is to enhance the transparency and comprehensibility of deep learning model decision-making processes for stakeholders, irrespective of their technical expertise. N° de réf. du vendeur 9783031946363
Quantité disponible : 1 disponible(s)
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Hardcover. Etat : Brand New. 430 pages. 9.25x6.10x9.49 inches. In Stock. N° de réf. du vendeur x-3031946367
Quantité disponible : 1 disponible(s)