This book consolidates knowledge on regression chain graph models, often referred to as regression graph models, with a particular emphasis on their parameterizations and inference for the analysis of categorical data. It presents regression graphs, their interpretation in terms of sequences of multivariate regressions, interpretable parameterizations for categorical data, and inference and model selection within the frequentist and Bayesian approaches. The aim is to reveal the benefits of this family of graphical models for statistical data analysis and to encourage applications of these models as well as further research in the field. Data and R code used in the book are available online. The text is primarily intended for graduate and PhD students in statistics and data science who are familiar with the basics of graphical Markov models and of categorical data analysis, and for motivated researchers in specific applied fields.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Monia Lupparelli is an Associate Professor at the Department of Statistics, Computer Science and Applications, University of Florence, Italy. Besides graphical Markov models and categorical data analysis, her main research interests include causal inference with emphasis on statistical methods for causal discovery, statistical models for the analysis of dynamic network data, and latent Markov models for longitudinal data analysis with application in several fields.
Giovanni Maria Marchetti is a Full Professor at the Department of Statistics, Computer Science and Applications, University of Florence, Italy. His research interests include the theory and applications of multivariate analysis, generalized linear models for circular data and graphical Markov models. His more recent publications concern the representations of independencies in chain and mixed graphs and the properties of the symmetric Ising distributions. Claudia Tarantola is a Full Professor at the Department of Economics, Management and Quantitative Methods, University of Milan, Italy. Besides graphical models and categorical data analysis, her research interests include Bayesian methods, Markov Chain Monte Carlo techniques, statistical models for financial risk, data science, and quantitative methods for diversity and inclusion.Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Vendeur : Grand Eagle Retail, Bensenville, IL, Etats-Unis
Paperback. Etat : new. Paperback. This book consolidates knowledge on regression chain graph models, often referred to as regression graph models, with a particular emphasis on their parameterizations and inference for the analysis of categorical data. It presents regression graphs, their interpretation in terms of sequences of multivariate regressions, interpretable parameterizations for categorical data, and inference and model selection within the frequentist and Bayesian approaches. The aim is to reveal the benefits of this family of graphical models for statistical data analysis and to encourage applications of these models as well as further research in the field. Data and R code used in the book are available online. The text is primarily intended for graduate and PhD students in statistics and data science who are familiar with the basics of graphical Markov models and of categorical data analysis, and for motivated researchers in specific applied fields. This book consolidates knowledge on regression chain graph models, often referred to as regression graph models, with a particular emphasis on their parameterizations and inference for the analysis of categorical data. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9783031997969
Quantité disponible : 1 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book consolidates knowledge on regression chain graph models, often referred to as regression graph models, with a particular emphasis on their parameterizations and inference for the analysis of categorical data. It presents regression graphs, their interpretation in terms of sequences of multivariate regressions, interpretable parameterizations for categorical data, and inference and model selection within the frequentist and Bayesian approaches. The aim is to reveal the benefits of this family of graphical models for statistical data analysis and to encourage applications of these models as well as further research in the field. Data and R code used in the book are available online. The text is primarily intended for graduate and PhD students in statistics and data science who are familiar with the basics of graphical Markov models and of categorical data analysis, and for motivated researchers in specific applied fields. 109 pp. Englisch. N° de réf. du vendeur 9783031997969
Quantité disponible : 2 disponible(s)
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Paperback. Etat : Brand New. 125 pages. 9.25x6.10 inches. In Stock. N° de réf. du vendeur x-3031997964
Quantité disponible : 1 disponible(s)
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. N° de réf. du vendeur 26404513939
Quantité disponible : 4 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. Print on Demand. N° de réf. du vendeur 409721676
Quantité disponible : 4 disponible(s)
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. PRINT ON DEMAND. N° de réf. du vendeur 18404513945
Quantité disponible : 4 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. N° de réf. du vendeur 2473707442
Quantité disponible : Plus de 20 disponibles
Vendeur : CitiRetail, Stevenage, Royaume-Uni
Paperback. Etat : new. Paperback. This book consolidates knowledge on regression chain graph models, often referred to as regression graph models, with a particular emphasis on their parameterizations and inference for the analysis of categorical data. It presents regression graphs, their interpretation in terms of sequences of multivariate regressions, interpretable parameterizations for categorical data, and inference and model selection within the frequentist and Bayesian approaches. The aim is to reveal the benefits of this family of graphical models for statistical data analysis and to encourage applications of these models as well as further research in the field. Data and R code used in the book are available online. The text is primarily intended for graduate and PhD students in statistics and data science who are familiar with the basics of graphical Markov models and of categorical data analysis, and for motivated researchers in specific applied fields. This book consolidates knowledge on regression chain graph models, often referred to as regression graph models, with a particular emphasis on their parameterizations and inference for the analysis of categorical data. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. N° de réf. du vendeur 9783031997969
Quantité disponible : 1 disponible(s)
Vendeur : AussieBookSeller, Truganina, VIC, Australie
Paperback. Etat : new. Paperback. This book consolidates knowledge on regression chain graph models, often referred to as regression graph models, with a particular emphasis on their parameterizations and inference for the analysis of categorical data. It presents regression graphs, their interpretation in terms of sequences of multivariate regressions, interpretable parameterizations for categorical data, and inference and model selection within the frequentist and Bayesian approaches. The aim is to reveal the benefits of this family of graphical models for statistical data analysis and to encourage applications of these models as well as further research in the field. Data and R code used in the book are available online. The text is primarily intended for graduate and PhD students in statistics and data science who are familiar with the basics of graphical Markov models and of categorical data analysis, and for motivated researchers in specific applied fields. This book consolidates knowledge on regression chain graph models, often referred to as regression graph models, with a particular emphasis on their parameterizations and inference for the analysis of categorical data. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. N° de réf. du vendeur 9783031997969
Quantité disponible : 1 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - Print on Demand Titel. Neuware -This book consolidates knowledge on regression chain graph models, often referred to as regression graph models, with a particular emphasis on their parameterizations and inference for the analysis of categorical data. It presents regression graphs, their interpretation in terms of sequences of multivariate regressions, interpretable parameterizations for categorical data, and inference and model selection within the frequentist and Bayesian approaches. The aim is to reveal the benefits of this family of graphical models for statistical data analysis and to encourage applications of these models as well as further research in the field. Data and R code used in the book are available online. The text is primarily intended for graduate and PhD students in statistics and data science who are familiar with the basics of graphical Markov models and of categorical data analysis, and for motivated researchers in specific applied fields.Springer-Verlag KG, Sachsenplatz 4-6, 1201 Wien 124 pp. Englisch. N° de réf. du vendeur 9783031997969
Quantité disponible : 1 disponible(s)