Hilbert Modular Forms With Coefficients in Intersection Homology and Quadratic Base Change - Couverture rigide

Getz, Jayce; Goresky, Mark

 
9783034803502: Hilbert Modular Forms With Coefficients in Intersection Homology and Quadratic Base Change

Synopsis

In the 1970s Hirzebruch and Zagier produced elliptic modular forms with coefficients in the homology of a Hilbert modular surface. They then computed the Fourier coefficients of these forms in terms of period integrals and L-functions. In this book the authors take an alternate approach to these theorems and generalize them to the setting of Hilbert modular varieties of arbitrary dimension. The approach is conceptual and uses tools that were not available to Hirzebruch and Zagier, including intersection homology theory, properties of modular cycles, and base change. Automorphic vector bundles, Hecke operators and Fourier coefficients of modular forms are presented both in the classical and adèlic settings. The book should provide a foundation for approaching similar questions for other locally symmetric spaces.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

Autres éditions populaires du même titre

9783034807951: Hilbert Modular Forms with Coefficients in Intersection Homology and Quadratic Base Change

Edition présentée

ISBN 10 :  3034807953 ISBN 13 :  9783034807951
Editeur : Birkhäuser, 2014
Couverture souple