This book studies certain spaces of Riemannian metrics on both compact and non-compact manifolds. These spaces are defined by various sign-based curvature conditions, with special attention paid to positive scalar curvature and non-negative sectional curvature, though we also consider positive Ricci and non-positive sectional curvature. If we form the quotient of such a space of metrics under the action of the diffeomorphism group (or possibly a subgroup) we obtain a moduli space. Understanding the topology of both the original space of metrics and the corresponding moduli space form the central theme of this book. For example, what can be said about the connectedness or the various homotopy groups of such spaces? We explore the major results in the area, but provide sufficient background so that a non-expert with a grounding in Riemannian geometry can access this growing area of research.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Wilderich Tuschmann's general research interests lie in the realms of global differential geometry, Riemannian geometry, geometric topology, and their applications, including, for example, questions concerning the geometry and topology of nonnegative and almost nonnegative curvature, singular metric spaces, collapsing and Gromov-Hausdorff convergence, analysis and geometry on Alexandrov spaces, geometric finiteness theorems, moduli spaces of Riemannian metrics, transformation groups, geometric bordism invariants, information and quantum information geometry. After his habilitation in mathematics at the University of Leipzig in 2000 he worked as a Deutsche Forschungsgemeinschaft Heisenberg Fellow at Westfälische Wilhems-Universität Münster, and from 2005-2010 he held a professorship at Christian-Albrechts-Universität Kiel. In the fall of 2010 he was appointed professor of mathematics at Karlsruhe Institute of Technology (KIT), a position he currently holds. David Wraith's main mathematical interests concern the existence of Riemannian metrics satisfying various kinds of curvature conditions and their topological implications. Most of his work to date has focused on the existence of positive Ricci curvature metrics. He has worked at the National University of Ireland Maynooth since 1997.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 7 expédition depuis Allemagne vers France
Destinations, frais et délaisEUR 9,94 expédition depuis Allemagne vers France
Destinations, frais et délaisVendeur : Antiquariat Bookfarm, Löbnitz, Allemagne
Softcover. x, 123 p. Ex-library with stamp and library-signature. GOOD condition, some traces of use. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. C-04661 9783034809474 Sprache: Englisch Gewicht in Gramm: 550. N° de réf. du vendeur 2490900
Quantité disponible : 1 disponible(s)
Vendeur : ANTIQUARIAT Franke BRUDDENBOOKS, Lübeck, Allemagne
Etat : Neu. 1st ed. 2015. 136 S. Buch ist neu, aus priv. Vorbesitz, ungelesen. -----Inhalt:. This book studies certain spaces of Riemannian metrics on both compact and non-compact manifolds. These spaces are defined by various sign-based curvature conditions, with special attention paid to positive scalar curvature and non-negative sectional curvature, though we also consider positive Ricci and non-positive sectional curvature. If we form the quotient of such a space of metrics under the action of the diffeomorphism group (or possibly a subgroup) we obtain a moduli space. Understanding the topology of both the original space of metrics and the corresponding moduli space form the central theme of this book. For example, what can be said about the connectedness or the various homotopy groups of such spaces? We explore the major results in the area, but provide sufficient background so that a non-expert with a grounding in Riemannian geometry can access this growing area of research. Wilderich Tuschmann's general research interests lie in the realms of global differential geometry, Riemannian geometry, geometric topology, and their applications, including, for example, questions concerning the geometry and topology of nonnegative and almost nonnegative curvature, singular metric spaces, collapsing and Gromov-Hausdorff convergence, analysis and geometry on Alexandrov spaces, geometric finiteness theorems, moduli spaces of Riemannian metrics, transformation groups, geometric bordism invariants, information and quantum information geometry. After his habilitation in mathematics at the University of Leipzig in 2000 he worked as a Deutsche Forschungsgemeinschaft Heisenberg Fellow at Westfälische Wilhems-Universität Münster, and from 2005-2010 he held a professorship at Christian-Albrechts-Universität Kiel. In the fall of 2010 he was appointed professor of mathematics at Karlsruhe Institute of Technology (KIT), a position he currently holds. David Wraith's main mathematical interests concern the existence of Riemannian metrics satisfying various kinds of curvature conditions and their topological implications. Most of his work to date has focused on the existence of positive Ricci curvature metrics. He has worked at the National University of Ireland Maynooth since 1997. Part I: Positive scalar curvature.- The (moduli) space of all Riemannian metrics.- Clifford algebras and spin.- Dirac operators and index theorems.- Early results on the space of positive scalar curvature metrics.- Kreck-Stolz invariants.- Applications of Kreck-Stolz invariants.- The eta invariant and applications.- The case of dimensions 2 and 3.- The observer moduli space and applications.- Other topological structures.- Negative scalar and Ricci curvature.- Part II: Sectional curvature.- Moduli spaces of compact manifolds with positive or non-negative sectional curvature.- Moduli spaces of compact manifolds with negative and non-positive sectional curvature.- Moduli spaces of non-compact manifolds with non-negative sectional curvature.- Positive pinching and the Klingenberg-Sakai conjecture. ISBN: 9783034809474 Wir senden umgehend mit beiliegender MwSt.Rechnung. Sprache: Englisch Gewicht in Gramm: 236 Broschur, Maße: 16.8 cm x 0.79 cm x 24 cm. N° de réf. du vendeur 668546
Quantité disponible : 1 disponible(s)
Vendeur : Chiron Media, Wallingford, Royaume-Uni
Paperback. Etat : New. N° de réf. du vendeur 6666-IUK-9783034809474
Quantité disponible : 10 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. First book dealing exclusively with this topic which has hitherto only been treated in original research papersDevelops relevant background and explains the ideas involved Short, concise text with topics ranging from classica. N° de réf. du vendeur 43799510
Quantité disponible : Plus de 20 disponibles
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This book studies certain spaces of Riemannian metrics on both compact and non-compact manifolds. These spaces are defined by various sign-based curvature conditions, with special attention paid to positive scalar curvature and non-negative sectional curvature, though we also consider positive Ricci and non-positive sectional curvature. If we form the quotient of such a space of metrics under the action of the diffeomorphism group (or possibly a subgroup) we obtain a moduli space. Understanding the topology of both the original space of metrics and the corresponding moduli space form the central theme of this book. For example, what can be said about the connectedness or the various homotopy groups of such spaces We explore the major results in the area, but provide sufficient background so that a non-expert with a grounding in Riemannian geometry can access this growing area of research. N° de réf. du vendeur 9783034809474
Quantité disponible : 1 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book studies certain spaces of Riemannian metrics on both compact and non-compact manifolds. These spaces are defined by various sign-based curvature conditions, with special attention paid to positive scalar curvature and non-negative sectional curvature, though we also consider positive Ricci and non-positive sectional curvature. If we form the quotient of such a space of metrics under the action of the diffeomorphism group (or possibly a subgroup) we obtain a moduli space. Understanding the topology of both the original space of metrics and the corresponding moduli space form the central theme of this book. For example, what can be said about the connectedness or the various homotopy groups of such spaces We explore the major results in the area, but provide sufficient background so that a non-expert with a grounding in Riemannian geometry can access this growing area of research. 136 pp. Englisch. N° de réf. du vendeur 9783034809474
Quantité disponible : 2 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. Neuware -This book studies certain spaces of Riemannian metrics on both compact and non-compact manifolds. These spaces are defined by various sign-based curvature conditions, with special attention paid to positive scalar curvature and non-negative sectional curvature, though we also consider positive Ricci and non-positive sectional curvature. If we form the quotient of such a space of metrics under the action of the diffeomorphism group (or possibly a subgroup) we obtain a moduli space. Understanding the topology of both the original space of metrics and the corresponding moduli space form the central theme of this book. For example, what can be said about the connectedness or the various homotopy groups of such spaces We explore the major results in the area, but provide sufficient background so that a non-expert with a grounding in Riemannian geometry can access this growing area of research.Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 136 pp. Englisch. N° de réf. du vendeur 9783034809474
Quantité disponible : 2 disponible(s)
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9783034809474
Quantité disponible : Plus de 20 disponibles
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. pp. 120. N° de réf. du vendeur 26372723264
Quantité disponible : 4 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. Print on Demand pp. 120. N° de réf. du vendeur 373354911
Quantité disponible : 4 disponible(s)