Die folgenden Anmerkungen dienen der Präzisierung der beschriebenen mathematischen und physikalischen Phänomene. [1] In der abstrakten Sprache der Mathematik kann eine genauere Definition einer Gruppe folgendermaßen getroffen werden. Eine Gruppe ist eine endliche oder unendliche Menge von Elementen A, B, C, ..., zwischen denen eine Verknüpfung, Multiplikation genannt, definiert ist. In der Gleichung C = AB soll aus je zwei der drei Elemente die Existenz und Eindeutigkeit der dritten folgen, und es soll das assoziative Gesetz A(BC) = (AB)C gelten. Die Elemente A, B, C, ... der Gruppe können «Operatoren» sein, die eine Transformation bewirken, wie z. B. A = Verschiebung, B = Dre- hung, C = Spiegelung. Das Produkt AB soll dann bedeuten, daß zuerst die Drehung B und dann die Verschiebung A ausgeführt werden. Das Resultat muß das gleiche sein wie das der Spiegelung C. [2] Siehe G. Mazzola, D. Krömker, G. R. Hofmann, Rasterbild-Bildraster, Anwendung der Graphischen Datenverarbeitung zur geometrischen Ana- lyse eines Meisterwerks der Renaissance: Raffaels, Berlin (Springer-Verlag) 1987.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
EUR 9,90 expédition depuis Allemagne vers France
Destinations, frais et délaisEUR 9,70 expédition depuis Allemagne vers France
Destinations, frais et délaisVendeur : Buchpark, Trebbin, Allemagne
Etat : Hervorragend. Zustand: Hervorragend | Sprache: Deutsch | Produktart: Bücher. N° de réf. du vendeur 24761300/1
Quantité disponible : 1 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Die folgenden Anmerkungen dienen der Praezisierung der beschriebenen mathematischen und physikalischen Phaenomene. [1] In der abstrakten Sprache der Mathematik kann eine genauere Definition einer Gruppe folgendermassen getroffen werden. Eine Gruppe ist eine en. N° de réf. du vendeur 4318505
Quantité disponible : Plus de 20 disponibles
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9783034852746_new
Quantité disponible : Plus de 20 disponibles
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - Die folgenden Anmerkungen dienen der Präzisierung der beschriebenen mathematischen und physikalischen Phänomene. [1] In der abstrakten Sprache der Mathematik kann eine genauere Definition einer Gruppe folgendermaßen getroffen werden. Eine Gruppe ist eine endliche oder unendliche Menge von Elementen A, B, C, . , zwischen denen eine Verknüpfung, Multiplikation genannt, definiert ist. In der Gleichung C = AB soll aus je zwei der drei Elemente die Existenz und Eindeutigkeit der dritten folgen, und es soll das assoziative Gesetz A(BC) = (AB)C gelten. Die Elemente A, B, C, . der Gruppe können 'Operatoren' sein, die eine Transformation bewirken, wie z. B. A = Verschiebung, B = Dre hung, C = Spiegelung. Das Produkt AB soll dann bedeuten, daß zuerst die Drehung B und dann die Verschiebung A ausgeführt werden. Das Resultat muß das gleiche sein wie das der Spiegelung C. [2] Siehe G. Mazzola, D. Krömker, G. R. Hofmann, Rasterbild-Bildraster, Anwendung der Graphischen Datenverarbeitung zur geometrischen Ana lyse eines Meisterwerks der Renaissance: Raffaels , Berlin (Springer-Verlag) 1987. N° de réf. du vendeur 9783034852746
Quantité disponible : 1 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Die folgenden Anmerkungen dienen der Präzisierung der beschriebenen mathematischen und physikalischen Phänomene. [1] In der abstrakten Sprache der Mathematik kann eine genauere Definition einer Gruppe folgendermaßen getroffen werden. Eine Gruppe ist eine endliche oder unendliche Menge von Elementen A, B, C, . , zwischen denen eine Verknüpfung, Multiplikation genannt, definiert ist. In der Gleichung C = AB soll aus je zwei der drei Elemente die Existenz und Eindeutigkeit der dritten folgen, und es soll das assoziative Gesetz A(BC) = (AB)C gelten. Die Elemente A, B, C, . der Gruppe können 'Operatoren' sein, die eine Transformation bewirken, wie z. B. A = Verschiebung, B = Dre hung, C = Spiegelung. Das Produkt AB soll dann bedeuten, daß zuerst die Drehung B und dann die Verschiebung A ausgeführt werden. Das Resultat muß das gleiche sein wie das der Spiegelung C. [2] Siehe G. Mazzola, D. Krömker, G. R. Hofmann, Rasterbild-Bildraster, Anwendung der Graphischen Datenverarbeitung zur geometrischen Ana lyse eines Meisterwerks der Renaissance: Raffaels , Berlin (Springer-Verlag) 1987. 268 pp. Deutsch. N° de réf. du vendeur 9783034852746
Quantité disponible : 2 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. Neuware -Die folgenden Anmerkungen dienen der Präzisierung der beschriebenen mathematischen und physikalischen Phänomene. [1] In der abstrakten Sprache der Mathematik kann eine genauere Definition einer Gruppe folgendermaßen getroffen werden. Eine Gruppe ist eine endliche oder unendliche Menge von Elementen A, B, C, . , zwischen denen eine Verknüpfung, Multiplikation genannt, definiert ist. In der Gleichung C = AB soll aus je zwei der drei Elemente die Existenz und Eindeutigkeit der dritten folgen, und es soll das assoziative Gesetz A(BC) = (AB)C gelten. Die Elemente A, B, C, . der Gruppe können «Operatoren» sein, die eine Transformation bewirken, wie z. B. A = Verschiebung, B = Dre hung, C = Spiegelung. Das Produkt AB soll dann bedeuten, daß zuerst die Drehung B und dann die Verschiebung A ausgeführt werden. Das Resultat muß das gleiche sein wie das der Spiegelung C. [2] Siehe G. Mazzola, D. Krömker, G. R. Hofmann, Rasterbild-Bildraster, Anwendung der Graphischen Datenverarbeitung zur geometrischen Ana lyse eines Meisterwerks der Renaissance: Raffaels , Berlin (Springer-Verlag) 1987.Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 268 pp. Deutsch. N° de réf. du vendeur 9783034852746
Quantité disponible : 2 disponible(s)
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9783034852746
Quantité disponible : Plus de 20 disponibles
Vendeur : Best Price, Torrance, CA, Etats-Unis
Etat : New. SUPER FAST SHIPPING. N° de réf. du vendeur 9783034852746
Quantité disponible : 1 disponible(s)
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Paperback. Etat : Brand New. reprint edition. 264 pages. German language. 9.02x5.98x0.63 inches. In Stock. N° de réf. du vendeur x-3034852746
Quantité disponible : 2 disponible(s)
Vendeur : preigu, Osnabrück, Allemagne
Taschenbuch. Etat : Neu. Der gebrochene Spiegel | Symmetrie, Symmetriebrechung und Ordnung in der Natur | Kuckuk (u. a.) | Taschenbuch | 264 S. | Deutsch | 2014 | Springer Basel | EAN 9783034852746 | Verantwortliche Person für die EU: Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. N° de réf. du vendeur 105282500
Quantité disponible : 5 disponible(s)