Schrödinger Equations and Diffusion Theory addresses the question "What is the Schrödinger equation?" in terms of diffusion processes, and shows that the Schrödinger equation and diffusion equations in duality are equivalent. In turn, Schrödinger's conjecture of 1931 is solved. The theory of diffusion processes for the Schrödinger equation tell us that we must go further into the theory of systems of (infinitely) many interacting quantum (diffusion) particles.
The method of relative entropy and the theory of transformations enable us to construct severely singular diffusion processes which appear to be equivalent to Schrödinger equations.
The theory of large deviations and the propagation of chaos of interacting diffusion particles reveal the statistical mechanical nature of the Schrödinger equation, namely, quantum mechanics.
The text is practically self-contained and requires only an elementary knowledge of probability theory at the graduate level.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Schrödinger Equations and Diffusion Theory addresses the question What is the Schrödinger equation? in terms of diffusion processes, and shows that the Schrödinger equation and diffusion equations in duality are equivalent. In turn, Schrödinger's conjecture of 1931 is solved. The theory of diffusion processes for the Schrödinger equation tells us that we must go further into the theory of systems of (infinitely) many interacting quantum (diffusion) particles. The method of relative entropy and the theory of transformations enable us to construct severely singular diffusion processes which appear to be equivalent to Schrödinger equations. The theory of large deviations and the propagation of chaos of interacting diffusion particles reveal the statistical mechanical nature of the Schrödinger equation, namely, quantum mechanics. The text is practically self-contained and requires only an elementary knowledge of probability theory at the graduate level. - This book is a self-contained, very well-organized monograph recommended to researchers and graduate students in the field of probability theory, functional analysis and quantum dynamics. ( . . . ) what is written in this book may be regarded as an introduction to the theory of diffusion processes and applications written with the physicists in mind. Interesting topics present themselves as the chapters proceed. ( . . . ) this book is an excellent addition to the literature of mathematical sciences with a flavour different from an ordinary textbook in probability theory because of the author's great contributions in this direction. Readers will certainly enjoy the topics and appreciate the profound mathematical properties of diffusion processes. (Mathematical Reviews)
Masao Nagasawa is professor of mathematics at the University of Zurich, Switzerland.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 2,26 expédition vers Etats-Unis
Destinations, frais et délaisEUR 2,26 expédition vers Etats-Unis
Destinations, frais et délaisVendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 21777481-n
Quantité disponible : 15 disponible(s)
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLIING23Mar3113020038906
Quantité disponible : Plus de 20 disponibles
Vendeur : Grand Eagle Retail, Bensenville, IL, Etats-Unis
Paperback. Etat : new. Paperback. Schroedinger Equations and Diffusion Theory addresses the question "What is the Schroedinger equation?" in terms of diffusion processes, and shows that the Schroedinger equation and diffusion equations in duality are equivalent. In turn, Schroedinger's conjecture of 1931 is solved. The theory of diffusion processes for the Schroedinger equation tell us that we must go further into the theory of systems of (infinitely) many interacting quantum (diffusion) particles.The method of relative entropy and the theory of transformations enable us to construct severely singular diffusion processes which appear to be equivalent to Schroedinger equations.The theory of large deviations and the propagation of chaos of interacting diffusion particles reveal the statistical mechanical nature of the Schroedinger equation, namely, quantum mechanics.The text is practically self-contained and requires only an elementary knowledge of probability theory at the graduate level. SchrAdinger Equations and Diffusion Theory addresses the question "What is the SchrAdinger equation?" in terms of diffusion processes, and shows that the SchrAdinger equation and diffusion equations in duality are equivalent. In turn, SchrAdinger's conjecture of 1931 is solved. The theory of diffusion processes for the SchrAdinger equation tell us that we must go further into the theory of systems of (infinitely) many interacting quantum (diffusion) particles. The method of relative entropy and the theory of transformations enable us to construct severely singular diffusion processes which appear to be equivalent to SchrAdinger equations. The theory of large deviations and the propagation of chaos of interacting diffusion particles reveal the statistical mechanical nature of the SchrAdinger equation, namely, quantum mechanics. The text is practically self-contained and requires only an elementary knowledge of probability theory at the graduate level. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9783034896849
Quantité disponible : 1 disponible(s)
Vendeur : BargainBookStores, Grand Rapids, MI, Etats-Unis
Paperback or Softback. Etat : New. Schrᅵdinger Equations and Diffusion Theory. Book. N° de réf. du vendeur BBS-9783034896849
Quantité disponible : 5 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 21777481
Quantité disponible : 15 disponible(s)
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9783034896849
Quantité disponible : Plus de 20 disponibles
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9783034896849_new
Quantité disponible : Plus de 20 disponibles
Vendeur : Chiron Media, Wallingford, Royaume-Uni
Paperback. Etat : New. N° de réf. du vendeur 6666-IUK-9783034896849
Quantité disponible : 10 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Schrödinger Equations and Diffusion Theory addresses the question 'What is the Schrödinger equation ' in terms of diffusion processes, and shows that the Schrödinger equation and diffusion equations in duality are equivalent. In turn, Schrödinger's conjecture of 1931 is solved. The theory of diffusion processes for the Schrödinger equation tell us that we must go further into the theory of systems of (infinitely) many interacting quantum (diffusion) particles.The method of relative entropy and the theory of transformations enable us to construct severely singular diffusion processes which appear to be equivalent to Schrödinger equations.The theory of large deviations and the propagation of chaos of interacting diffusion particles reveal the statistical mechanical nature of the Schrödinger equation, namely, quantum mechanics.The text is practically self-contained and requires only an elementary knowledge of probability theory at the graduate level. 340 pp. Englisch. N° de réf. du vendeur 9783034896849
Quantité disponible : 2 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Schroedinger Equations and Diffusion Theory addresses the question What is the Schroedinger equation? in terms of diffusion processes, and shows that the Schroedinger equation and diffusion equations in duality are equivalent. In turn, Sc. N° de réf. du vendeur 4319496
Quantité disponible : Plus de 20 disponibles