1 Klassifikation der einfachen Hyperftächen-Singularitäten . . . . . . . . . . . . . . 2 1. 1 Abbildungskeime, Rechtsäquivalenz, Einfachheit . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1. 2 Endlich bestimmte FUnktionskeime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 1. 3 Klassifikation der einfachen Singularitäten in C ---- ------------. -. . . --. - 11 1. 4 Beweis des verallgemeinerten Morse-Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1. 5 Klassifikation der einfachen Singularitäten in C" . . . . . . . . . . . . . . . . . . . . . . . . 19 3 2 Die einfachen Flächensingularitäten in C als Quotientensingularitäten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2. 1 Die endlichen Untergruppen von SL(2, C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2. 2 Quotientensingularitäten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2 2. 3 C jG, wo G eine endliche Untergruppe von SL(2, C) ist . . . . . . . . . . . . . . . . . 27 2. 4 Die Rationalität der Quotientensingularitäten . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3 Die Auflösung der einfachen zweidimensionalen Hyperftächensingularitäten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3. 1 Das Auflösen von Kurvensingularitäten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2 3. 2 Das Auflösen von C jG, wo G eine endliche Untergruppe von SL(2, C) ist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4 Elementare lokale Eigenschaften von Singularitäten . . . . . . . . . . . . . . . . . . 49 4. 1 Der Umgebungsrand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4. 2 Gute Repräsentanten von Abbildungskeimen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4. 3 Monodromie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4. 4 Die Monodromie einer quadratischen Singularität (lokaler Fall) . . . . . . . . . . 65 5 Die U ntersuchung von Milnorfasern . . . . . . . . . . . . . . . . . -. . . -. . --. - -. . . . . . . 73 5. 1 Milnorfasem von ebenen Kurvensingularitäten . . . . . . -. . -. . . -. . -. . . . . . . . . 73 5. 2 Milnorfasem von Hyperfiä. chensingularitäten . . . . . . . . . . . . . . -. . -. . . . . . . . . . 81 6 Die Beec r hnung d er M o n oro d mie . . . . . . . . . . . . . . . . . . . -. . . . . . -. . - . . . . . . . . . 87 6. 1 Die Morsifikation . . . ., . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -. . . . . . . 87 6. 2 Die Monodromie der ebenen Kurvensingularitäten in Cl. . . . . . . . . . 88 6. 3 Dynkin-Dia. gramm und Monodromiegruppe . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6. 4 Die Monodromie beim Addieren von FUnktionskeimen . . . . . . . . . . . . .
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
EUR 29,71 expédition depuis Royaume-Uni vers France
Destinations, frais et délaisEUR 11,28 expédition depuis Royaume-Uni vers France
Destinations, frais et délaisVendeur : Chiron Media, Wallingford, Royaume-Uni
PF. Etat : New. N° de réf. du vendeur 6666-IUK-9783034897198
Quantité disponible : 10 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. 1 Klassifikation der einfachen Hyperflaechen-Singularitaeten.- 1.1 Abbildungskeime, Rechtsaequivalenz, Einfachheit.- 1.2 Endlich bestimmte Funktionskeime.- 1.3 Klassifikation der einfachen Singularitaeten in ?2.- 1.4 Beweis des verallgemeinerten Morse-Lemmas V. N° de réf. du vendeur 4319531
Quantité disponible : Plus de 20 disponibles
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - 1 Klassifikation der einfachen Hyperftächen-Singularitäten . . . . . . . . . . . . . . 2 1. 1 Abbildungskeime, Rechtsäquivalenz, Einfachheit . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1. 2 Endlich bestimmte FUnktionskeime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 1. 3 Klassifikation der einfachen Singularitäten in C . . . . . 11 1. 4 Beweis des verallgemeinerten Morse-Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1. 5 Klassifikation der einfachen Singularitäten in C' . . . . . . . . . . . . . . . . . . . . . . . . 19 3 2 Die einfachen Flächensingularitäten in C als Quotientensingularitäten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2. 1 Die endlichen Untergruppen von SL(2, C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2. 2 Quotientensingularitäten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2 2. 3 C jG, wo G eine endliche Untergruppe von SL(2, C) ist . . . . . . . . . . . . . . . . . 27 2. 4 Die Rationalität der Quotientensingularitäten . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3 Die Auflösung der einfachen zweidimensionalen Hyperftächensingularitäten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3. 1 Das Auflösen von Kurvensingularitäten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2 3. 2 Das Auflösen von C jG, wo G eine endliche Untergruppe von SL(2, C) ist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4 Elementare lokale Eigenschaften von Singularitäten . . . . . . . . . . . . . . . . . . 49 4. 1 Der Umgebungsrand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4. 2 Gute Repräsentanten von Abbildungskeimen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4. 3 Monodromie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4. 4 Die Monodromie einer quadratischen Singularität (lokaler Fall) . . . . . . . . . . 65 5 Die U ntersuchung von Milnorfasern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5. 1 Milnorfasem von ebenen Kurvensingularitäten . . . . . . . . . . . . . . . . . . . . . . 73 5. 2 Milnorfasem von Hyperfiä. chensingularitäten . . . . . . . . . . . . . . . . . . . . . . . . . . 81 6 Die Beec r hnung d er M o n oro d mie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 6. 1 Die Morsifikation . . . . , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 6. 2 Die Monodromie der ebenen Kurvensingularitäten in Cl. . . . . . . . . . 88 6. 3 Dynkin-Dia. gramm und Monodromiegruppe . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6. 4 Die Monodromie beim Addieren von FUnktionskeimen . . . . . . . . . . . . . N° de réf. du vendeur 9783034897198
Quantité disponible : 1 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -1 Klassifikation der einfachen Hyperftächen-Singularitäten . . . . . . . . . . . . . . 2 1. 1 Abbildungskeime, Rechtsäquivalenz, Einfachheit . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1. 2 Endlich bestimmte FUnktionskeime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 1. 3 Klassifikation der einfachen Singularitäten in C . . . . . 11 1. 4 Beweis des verallgemeinerten Morse-Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1. 5 Klassifikation der einfachen Singularitäten in C' . . . . . . . . . . . . . . . . . . . . . . . . 19 3 2 Die einfachen Flächensingularitäten in C als Quotientensingularitäten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2. 1 Die endlichen Untergruppen von SL(2, C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2. 2 Quotientensingularitäten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2 2. 3 C jG, wo G eine endliche Untergruppe von SL(2, C) ist . . . . . . . . . . . . . . . . . 27 2. 4 Die Rationalität der Quotientensingularitäten . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3 Die Auflösung der einfachen zweidimensionalen Hyperftächensingularitäten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3. 1 Das Auflösen von Kurvensingularitäten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2 3. 2 Das Auflösen von C jG, wo G eine endliche Untergruppe von SL(2, C) ist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4 Elementare lokale Eigenschaften von Singularitäten . . . . . . . . . . . . . . . . . . 49 4. 1 Der Umgebungsrand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4. 2 Gute Repräsentanten von Abbildungskeimen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4. 3 Monodromie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4. 4 Die Monodromie einer quadratischen Singularität (lokaler Fall) . . . . . . . . . . 65 5 Die U ntersuchung von Milnorfasern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5. 1 Milnorfasem von ebenen Kurvensingularitäten . . . . . . . . . . . . . . . . . . . . . . 73 5. 2 Milnorfasem von Hyperfiä. chensingularitäten . . . . . . . . . . . . . . . . . . . . . . . . . . 81 6 Die Beec r hnung d er M o n oro d mie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 6. 1 Die Morsifikation . . . . , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 6. 2 Die Monodromie der ebenen Kurvensingularitäten in Cl. . . . . . . . . . 88 6. 3 Dynkin-Dia. gramm und Monodromiegruppe . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6. 4 Die Monodromie beim Addieren von FUnktionskeimen . . . . . . . . . . . . . 140 pp. Deutsch. N° de réf. du vendeur 9783034897198
Quantité disponible : 2 disponible(s)
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9783034897198_new
Quantité disponible : Plus de 20 disponibles
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. Neuware -Eigenschaften von Singularitäten . . . . . . . . . . . . . . . . . . 49 4. 1 Der Umgebungsrand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4. 2 Gute Repräsentanten von Abbildungskeimen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4. 3 Monodromie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4. 4 Die Monodromie einer quadratischen Singularität (lokaler Fall) . . . . . . . . . . 65 5 Die U ntersuchung von Milnorfasern . . . . . . . . . . . . . . . . . ¿. . . ¿. . ¿¿. ¿ ¿. . . . . . . 73 5. 1 Milnorfasem von ebenen Kurvensingularitäten . . . . . . ¿. . ¿. . . ¿. . ¿. . . . . . . . . 73 5. 2 Milnorfasem von Hyperfiä. chensingularitäten . . . . . . . . . . . . . . ¿. . ¿. . . . . . . . . . 81 6 Die Beec r hnung d er M o n oro d mie . . . . . . . . . . . . . . . . . . . ¿. . . . . . ¿. . ¿ . . . . . . . . . 87 6. 1 Die Morsifikation . . . . , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ¿. . . . . . . 87 6. 2 Die Monodromie der ebenen Kurvensingularitäten in Cl. . . . . . . . . . 88 6. 3 Dynkin-Dia. gramm und Monodromiegruppe . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6. 4 Die Monodromie beim Addieren von FUnktionskeimen . . . . . . . . . . . . .Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 152 pp. Deutsch. N° de réf. du vendeur 9783034897198
Quantité disponible : 2 disponible(s)
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9783034897198
Quantité disponible : Plus de 20 disponibles
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Paperback. Etat : Brand New. 146 pages. German language. 9.60x6.69x0.50 inches. In Stock. N° de réf. du vendeur x-3034897197
Quantité disponible : 2 disponible(s)
Vendeur : preigu, Osnabrück, Allemagne
Taschenbuch. Etat : Neu. Singularitäten | Horst Knörrer (u. a.) | Taschenbuch | vi | Deutsch | 2012 | Springer Basel | EAN 9783034897198 | Verantwortliche Person für die EU: Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. N° de réf. du vendeur 105282919
Quantité disponible : 5 disponible(s)
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLIING23Mar3113020038938
Quantité disponible : Plus de 20 disponibles