Articles liés à Convex Integration Theory: Solutions to the H-principle...

Convex Integration Theory: Solutions to the H-principle in Geometry and Topology - Couverture souple

 
9783034898362: Convex Integration Theory: Solutions to the H-principle in Geometry and Topology

Synopsis

§1. Historical Remarks Convex Integration theory, first introduced by M. Gromov [17], is one of three general methods in immersion-theoretic topology for solving a broad range of problems in geometry and topology. The other methods are: (i) Removal of Singularities, introduced by M. Gromov and Y. Eliashberg [8]; (ii) the covering homotopy method which, following M. Gromov's thesis [16], is also referred to as the method of sheaves. The covering homotopy method is due originally to S. Smale [36] who proved a crucial covering homotopy result in order to solve the classification problem for immersions of spheres in Euclidean space. These general methods are not linearly related in the sense that succes- sive methods subsumed the previous methods. Each method has its own distinct foundation, based on an independent geometrical or analytical insight. Conse- quently, each method has a range of applications to problems in topology that are best suited to its particular insight. For example, a distinguishing feature of Convex Integration theory is that it applies to solve closed relations in jet spaces, including certain general classes of underdetermined non-linear systems of par- tial differential equations. As a case of interest, the Nash-Kuiper Cl-isometrie immersion theorem ean be reformulated and proved using Convex Integration theory (cf. Gromov [18]). No such results on closed relations in jet spaees can be proved by means of the other two methods.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

  • ÉditeurBirkhauser Verlag AG
  • Date d'édition2012
  • ISBN 10 3034898363
  • ISBN 13 9783034898362
  • ReliureBroché
  • Langueanglais
  • Nombre de pages213
  • ÉditeurSpring David
  • Coordonnées du fabricantnon disponible

Acheter D'occasion

état :  Comme neuf
Like New
Afficher cet article
EUR 166,34

Autre devise

EUR 29,69 expédition depuis Royaume-Uni vers France

Destinations, frais et délais

Acheter neuf

Afficher cet article
EUR 92,27

Autre devise

EUR 9,70 expédition depuis Allemagne vers France

Destinations, frais et délais

Autres éditions populaires du même titre

Résultats de recherche pour Convex Integration Theory: Solutions to the H-principle...

Image fournie par le vendeur

Spring, David
Edité par Birkhäuser Basel, 2012
ISBN 10 : 3034898363 ISBN 13 : 9783034898362
Neuf Couverture souple

Vendeur : moluna, Greven, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 4319643

Contacter le vendeur

Acheter neuf

EUR 92,27
Autre devise
Frais de port : EUR 9,70
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

David Spring
Edité par Birkhäuser Basel, 2012
ISBN 10 : 3034898363 ISBN 13 : 9783034898362
Neuf Taschenbuch

Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - 1. Historical Remarks Convex Integration theory, first introduced by M. Gromov [17], is one of three general methods in immersion-theoretic topology for solving a broad range of problems in geometry and topology. The other methods are: (i) Removal of Singularities, introduced by M. Gromov and Y. Eliashberg [8]; (ii) the covering homotopy method which, following M. Gromov's thesis [16], is also referred to as the method of sheaves. The covering homotopy method is due originally to S. Smale [36] who proved a crucial covering homotopy result in order to solve the classification problem for immersions of spheres in Euclidean space. These general methods are not linearly related in the sense that succes sive methods subsumed the previous methods. Each method has its own distinct foundation, based on an independent geometrical or analytical insight. Conse quently, each method has a range of applications to problems in topology that are best suited to its particular insight. For example, a distinguishing feature of Convex Integration theory is that it applies to solve closed relations in jet spaces, including certain general classes of underdetermined non-linear systems of par tial differential equations. As a case of interest, the Nash-Kuiper Cl-isometrie immersion theorem ean be reformulated and proved using Convex Integration theory (cf. Gromov [18]). No such results on closed relations in jet spaees can be proved by means of the other two methods. N° de réf. du vendeur 9783034898362

Contacter le vendeur

Acheter neuf

EUR 106,99
Autre devise
Frais de port : EUR 10,99
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

David Spring
Edité par Birkhäuser Basel Nov 2012, 2012
ISBN 10 : 3034898363 ISBN 13 : 9783034898362
Neuf Taschenbuch
impression à la demande

Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -1. Historical Remarks Convex Integration theory, first introduced by M. Gromov [17], is one of three general methods in immersion-theoretic topology for solving a broad range of problems in geometry and topology. The other methods are: (i) Removal of Singularities, introduced by M. Gromov and Y. Eliashberg [8]; (ii) the covering homotopy method which, following M. Gromov's thesis [16], is also referred to as the method of sheaves. The covering homotopy method is due originally to S. Smale [36] who proved a crucial covering homotopy result in order to solve the classification problem for immersions of spheres in Euclidean space. These general methods are not linearly related in the sense that succes sive methods subsumed the previous methods. Each method has its own distinct foundation, based on an independent geometrical or analytical insight. Conse quently, each method has a range of applications to problems in topology that are best suited to its particular insight. For example, a distinguishing feature of Convex Integration theory is that it applies to solve closed relations in jet spaces, including certain general classes of underdetermined non-linear systems of par tial differential equations. As a case of interest, the Nash-Kuiper Cl-isometrie immersion theorem ean be reformulated and proved using Convex Integration theory (cf. Gromov [18]). No such results on closed relations in jet spaees can be proved by means of the other two methods. 228 pp. Englisch. N° de réf. du vendeur 9783034898362

Contacter le vendeur

Acheter neuf

EUR 106,99
Autre devise
Frais de port : EUR 11
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

David Spring
ISBN 10 : 3034898363 ISBN 13 : 9783034898362
Neuf Taschenbuch

Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. Neuware - 1. Historical Remarks Convex Integration theory, first introduced by M. Gromov [17], is one of three general methods in immersion-theoretic topology for solving a broad range of problems in geometry and topology. The other methods are: (i) Removal of Singularities, introduced by M. Gromov and Y. Eliashberg [8]; (ii) the covering homotopy method which, following M. Gromov's thesis [16], is also referred to as the method of sheaves. The covering homotopy method is due originally to S. Smale [36] who proved a crucial covering homotopy result in order to solve the classification problem for immersions of spheres in Euclidean space. These general methods are not linearly related in the sense that succes sive methods subsumed the previous methods. Each method has its own distinct foundation, based on an independent geometrical or analytical insight. Conse quently, each method has a range of applications to problems in topology that are best suited to its particular insight. For example, a distinguishing feature of Convex Integration theory is that it applies to solve closed relations in jet spaces, including certain general classes of underdetermined non-linear systems of par tial differential equations. As a case of interest, the Nash-Kuiper Cl-isometrie immersion theorem ean be reformulated and proved using Convex Integration theory (cf. Gromov [18]). No such results on closed relations in jet spaees can be proved by means of the other two methods.Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 228 pp. Englisch. N° de réf. du vendeur 9783034898362

Contacter le vendeur

Acheter neuf

EUR 106,99
Autre devise
Frais de port : EUR 15
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image d'archives

Edité par Birkhäuser, 2012
ISBN 10 : 3034898363 ISBN 13 : 9783034898362
Neuf Couverture souple

Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. In. N° de réf. du vendeur ria9783034898362_new

Contacter le vendeur

Acheter neuf

EUR 119,40
Autre devise
Frais de port : EUR 4,74
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Edité par Birkhäuser, 2012
ISBN 10 : 3034898363 ISBN 13 : 9783034898362
Neuf Couverture souple

Vendeur : California Books, Miami, FL, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur I-9783034898362

Contacter le vendeur

Acheter neuf

EUR 130,20
Autre devise
Frais de port : EUR 7,02
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Spring, David (Editor)
Edité par Birkhauser, 2012
ISBN 10 : 3034898363 ISBN 13 : 9783034898362
Neuf Paperback

Vendeur : Revaluation Books, Exeter, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : Brand New. 228 pages. 9.30x6.20x0.55 inches. In Stock. N° de réf. du vendeur x-3034898363

Contacter le vendeur

Acheter neuf

EUR 153,53
Autre devise
Frais de port : EUR 11,87
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image d'archives

Edité par Birkhäuser, 2012
ISBN 10 : 3034898363 ISBN 13 : 9783034898362
Neuf Couverture souple

Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur ABLIING23Mar3113020039027

Contacter le vendeur

Acheter neuf

EUR 104,94
Autre devise
Frais de port : EUR 65,84
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Edité par Birkhäuser, 2012
ISBN 10 : 3034898363 ISBN 13 : 9783034898362
Ancien ou d'occasion Paperback

Vendeur : Mispah books, Redhill, SURRE, Royaume-Uni

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : Like New. Like New. book. N° de réf. du vendeur ERICA78730348983636

Contacter le vendeur

Acheter D'occasion

EUR 166,34
Autre devise
Frais de port : EUR 29,69
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier