Computer simulation of semiconductor processing equipment and devices requires the use of a wide variety of numerical methods. Of these methods, the Monte Carlo approach is perhaps most fundamentally suited to mod- eling physical events occurring on microscopic scales which are intricately connected to the particle structure of nature. Here physical phenomena can be simulated by following simulation particles (such as electrons, molecules, photons, etc. ) through a statistical sampling of scattering events. Monte Carlo is, however, generally looked on as a last resort due to the extremely slow convergence of these methods. It is of interest, then, to examine when in microelectronics it is necessary to use Monte Carlo methods, how such methods may be improved, and what are the alternatives. This book ad- dresses three general areas of simulation which frequently arise in semicon- ductor modeling where Monte Carlo methods playa significant role. In the first chapter the basic mathematical theory of the Boltzmann equation for particle transport is presented. The following chapters are devoted to the modeling of the transport processes and the associated Monte Carlo meth- ods. Specific examples of industrial applications illustrate the effectiveness and importance of these methods. Two of these areas concern simulation of physical particles which may be assigned a time dependent position and velocity. This includes the molecules of a dilute gas used in such processing equipment as chemi- cal vapor decomposition reactors and sputtering reactors. We also consider charged particles moving within a semiconductor lattice.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
EUR 29,03 expédition depuis Royaume-Uni vers France
Destinations, frais et délaisEUR 6,87 expédition depuis Etats-Unis vers France
Destinations, frais et délaisVendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9783034898980
Quantité disponible : Plus de 20 disponibles
Vendeur : moluna, Greven, Allemagne
Etat : New. N° de réf. du vendeur 4319700
Quantité disponible : Plus de 20 disponibles
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9783034898980_new
Quantité disponible : Plus de 20 disponibles
Vendeur : Chiron Media, Wallingford, Royaume-Uni
PF. Etat : New. N° de réf. du vendeur 6666-IUK-9783034898980
Quantité disponible : 10 disponible(s)
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Paperback. Etat : Brand New. reprint edition. 244 pages. 8.98x5.91x0.63 inches. In Stock. N° de réf. du vendeur x-3034898983
Quantité disponible : 2 disponible(s)
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - Computer simulation of semiconductor processing equipment and devices requires the use of a wide variety of numerical methods. Of these methods, the Monte Carlo approach is perhaps most fundamentally suited to mod eling physical events occurring on microscopic scales which are intricately connected to the particle structure of nature. Here physical phenomena can be simulated by following simulation particles (such as electrons, molecules, photons, etc. ) through a statistical sampling of scattering events. Monte Carlo is, however, generally looked on as a last resort due to the extremely slow convergence of these methods. It is of interest, then, to examine when in microelectronics it is necessary to use Monte Carlo methods, how such methods may be improved, and what are the alternatives. This book ad dresses three general areas of simulation which frequently arise in semicon ductor modeling where Monte Carlo methods playa significant role. In the first chapter the basic mathematical theory of the Boltzmann equation for particle transport is presented. The following chapters are devoted to the modeling of the transport processes and the associated Monte Carlo meth ods. Specific examples of industrial applications illustrate the effectiveness and importance of these methods. Two of these areas concern simulation of physical particles which may be assigned a time dependent position and velocity. This includes the molecules of a dilute gas used in such processing equipment as chemi cal vapor decomposition reactors and sputtering reactors. We also consider charged particles moving within a semiconductor lattice. N° de réf. du vendeur 9783034898980
Quantité disponible : 1 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - Print on Demand Titel. Neuware -Computer simulation of semiconductor processing equipment and devices requires the use of a wide variety of numerical methods. Of these methods, the Monte Carlo approach is perhaps most fundamentally suited to mod eling physical events occurring on microscopic scales which are intricately connected to the particle structure of nature. Here physical phenomena can be simulated by following simulation particles (such as electrons, molecules, photons, etc. ) through a statistical sampling of scattering events. Monte Carlo is, however, generally looked on as a last resort due to the extremely slow convergence of these methods. It is of interest, then, to examine when in microelectronics it is necessary to use Monte Carlo methods, how such methods may be improved, and what are the alternatives. This book ad dresses three general areas of simulation which frequently arise in semicon ductor modeling where Monte Carlo methods playa significant role. In the first chapter the basic mathematical theory of the Boltzmann equation for particle transport is presented. The following chapters are devoted to the modeling of the transport processes and the associated Monte Carlo meth ods. Specific examples of industrial applications illustrate the effectiveness and importance of these methods. Two of these areas concern simulation of physical particles which may be assigned a time dependent position and velocity. This includes the molecules of a dilute gas used in such processing equipment as chemi cal vapor decomposition reactors and sputtering reactors. We also consider charged particles moving within a semiconductor lattice.Springer Nature c/o IBS, Benzstrasse 21, 48619 Heek 244 pp. Englisch. N° de réf. du vendeur 9783034898980
Quantité disponible : 1 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Computer simulation of semiconductor processing equipment and devices requires the use of a wide variety of numerical methods. Of these methods, the Monte Carlo approach is perhaps most fundamentally suited to mod eling physical events occurring on microscopic scales which are intricately connected to the particle structure of nature. Here physical phenomena can be simulated by following simulation particles (such as electrons, molecules, photons, etc. ) through a statistical sampling of scattering events. Monte Carlo is, however, generally looked on as a last resort due to the extremely slow convergence of these methods. It is of interest, then, to examine when in microelectronics it is necessary to use Monte Carlo methods, how such methods may be improved, and what are the alternatives. This book ad dresses three general areas of simulation which frequently arise in semicon ductor modeling where Monte Carlo methods playa significant role. In the first chapter the basic mathematical theory of the Boltzmann equation for particle transport is presented. The following chapters are devoted to the modeling of the transport processes and the associated Monte Carlo meth ods. Specific examples of industrial applications illustrate the effectiveness and importance of these methods. Two of these areas concern simulation of physical particles which may be assigned a time dependent position and velocity. This includes the molecules of a dilute gas used in such processing equipment as chemi cal vapor decomposition reactors and sputtering reactors. We also consider charged particles moving within a semiconductor lattice. 240 pp. Englisch. N° de réf. du vendeur 9783034898980
Quantité disponible : 2 disponible(s)
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. pp. 246. N° de réf. du vendeur 2648029468
Quantité disponible : 4 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. Print on Demand pp. 246 23:B&W 6 x 9 in or 229 x 152 mm Perfect Bound on White w/Gloss Lam. N° de réf. du vendeur 44785859
Quantité disponible : 4 disponible(s)