This textbook provides a self-contained and elementary introduction to the modern theory of pseudodifferential operators and their applications to partial differential equations.
In the first chapters, the necessary material on Fourier transformation and distribution theory is presented. Subsequently the basic calculus of pseudodifferential operators on the n-dimensional Euclidean space is developed. In order to present the deep results on regularity questions for partial differential equations, an introduction to the theory of singular integral operators is given - which is of interest for its own. Moreover, to get a wide range of applications, one chapter is devoted to the modern theory of Besov and Bessel potential spaces. In order to demonstrate some fundamental approaches and the power of the theory, several applications to wellposedness and regularity question for elliptic and parabolic equations are presented throughout the book. The basic notation of functional analysis needed in the book is introduced and summarized in the appendix.
The text is comprehensible for students of mathematics and physics with a basic education in analysis.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Helmut Abels, University of Regensburg, Germany.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 17,19 expédition depuis Etats-Unis vers France
Destinations, frais et délaisEUR 3,44 expédition depuis Etats-Unis vers France
Destinations, frais et délaisVendeur : Rarewaves USA, OSWEGO, IL, Etats-Unis
Paperback. Etat : New. This textbook provides a self-contained and elementary introduction to the modern theory of pseudodifferential operators and their applications to partial differential equations. In the first chapters, the necessary material on Fourier transformation and distribution theory is presented. Subsequently the basic calculus of pseudodifferential operators on the n-dimensional Euclidean space is developed. In order to present the deep results on regularity questions for partial differential equations, an introduction to the theory of singular integral operators is given - which is of interest for its own. Moreover, to get a wide range of applications, one chapter is devoted to the modern theory of Besov and Bessel potential spaces. In order to demonstrate some fundamental approaches and the power of the theory, several applications to wellposedness and regularity question for elliptic and parabolic equations are presented throughout the book. The basic notation of functional analysis needed in the book is introduced and summarized in the appendix. The text is comprehensible for students of mathematics and physics with a basic education in analysis. N° de réf. du vendeur LU-9783110250305
Quantité disponible : Plus de 20 disponibles
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9783110250305
Quantité disponible : Plus de 20 disponibles
Vendeur : BargainBookStores, Grand Rapids, MI, Etats-Unis
Paperback or Softback. Etat : New. Pseudodifferential and Singular Integral Operators: An Introduction with Applications 0.85. Book. N° de réf. du vendeur BBS-9783110250305
Quantité disponible : 5 disponible(s)
Vendeur : Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlande
Etat : New. 2011. perfect. . . . . . N° de réf. du vendeur V9783110250305
Quantité disponible : 15 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 16202980-n
Quantité disponible : Plus de 20 disponibles
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This textbook provides a self-contained and elementary introduction to the modern theory of pseudodifferential operators and their applications to partial differential equations. In the first chapters, the necessary material on Fourier transformation and distribution theory is presented. Subsequently the basic calculus of pseudodifferential operators on the n-dimensional Euclidean space is developed. In order to present the deep results on regularity questions for partial differential equations, an introduction to the theory of singular integral operators is given - which is of interest for its own. Moreover, to get a wide range of applications, one chapter is devoted to the modern theory of Besov and Bessel potential spaces. In order to demonstrate some fundamental approaches and the power of the theory, several applications to wellposedness and regularity question for elliptic and parabolic equations are presented throughout the book. The basic notation of functional analysis needed in the book is introduced and summarized in the appendix. The text is comprehensible for students of mathematics and physics with a basic education in analysis. N° de réf. du vendeur 9783110250305
Quantité disponible : 1 disponible(s)
Vendeur : moluna, Greven, Allemagne
Gebunden. Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Helmut Abels, University . N° de réf. du vendeur 4455936
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 16202980
Quantité disponible : Plus de 20 disponibles
Vendeur : Kennys Bookstore, Olney, MD, Etats-Unis
Etat : New. 2011. perfect. . . . . . Books ship from the US and Ireland. N° de réf. du vendeur V9783110250305
Quantité disponible : 15 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Buch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This textbook provides a self-contained and elementary introduction to the modern theory of pseudodifferential operators and their applications to partial differential equations. In the first chapters, the necessary material on Fourier transformation and distribution theory is presented. Subsequently the basic calculus of pseudodifferential operators on the n-dimensional Euclidean space is developed. In order to present the deep results on regularity questions for partial differential equations, an introduction to the theory of singular integral operators is given - which is of interest for its own. Moreover, to get a wide range of applications, one chapter is devoted to the modern theory of Besov and Bessel potential spaces. In order to demonstrate some fundamental approaches and the power of the theory, several applications to wellposedness and regularity question for elliptic and parabolic equations are presented throughout the book. The basic notation of functional analysis needed in the book is introduced and summarized in the appendix. The text is comprehensible for students of mathematics and physics with a basic education in analysis. 222 pp. Englisch. N° de réf. du vendeur 9783110250305
Quantité disponible : 2 disponible(s)