Articles liés à Large Scale Inverse Problems: Computational Methods...

Large Scale Inverse Problems: Computational Methods and Applications in the Earth Sciences - Couverture rigide

 
9783110282221: Large Scale Inverse Problems: Computational Methods and Applications in the Earth Sciences

Synopsis

This book is the second volume of a three volume series recording the "Radon Special Semester 2011 on Multiscale Simulation & Analysis in Energy and the Environment" that took placein Linz, Austria, October 3-7, 2011. This volume addresses the common ground in the mathematical and computational procedures required for large-scale inverse problems and data assimilation in forefront applications.

The solution of inverse problems is fundamental to a wide variety of applications such as weather forecasting, medical tomography, and oil exploration. Regularisation techniques are needed to ensure solutions of sufficient quality to be useful, and soundly theoretically based. This book addresses the common techniques required for all the applications, and is thus truly interdisciplinary.

This collection of survey articles focusses on the large inverse problems commonly arising in simulation and forecasting in the earth sciences. For example, operational weather forecasting models have between 107 and 108 degrees of freedom. Even so, these degrees of freedom represent grossly space-time averaged properties of the atmosphere. Accurate forecasts require accurate initial conditions. With recent developments in satellite data, there are between 106 and 107 observations each day. However, while these also represent space-time averaged properties, the averaging implicit in the measurements is quite different from that used in the models. In atmosphere and ocean applications, there is a physically-based model available which can be used to regularise the problem. We assume that there is a set of observations with known error characteristics available over a period of time. The basic deterministic technique is to fit a model trajectory to the observations over a period of time to within the observation error. Since the model is not perfect the model trajectory has to be corrected, which defines the data assimilation problem. The stochastic view can be expressed by using an ensemble of model trajectories, and calculating corrections to both the mean value and the spread which allow the observations to be fitted by each ensemble member. In other areas of earth science, only the structure of the model formulation itself is known and the aim is to use the past observation history to determine the unknown model parameters.

The book records the achievements of Workshop 2 "Large-Scale Inverse Problems and Applications in the Earth Sciences". It involves experts in the theory of inverse problems together with experts working on both theoretical and practical aspects of the techniques by which large inverse problems arise in the earth sciences.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

À propos de l?auteur

Mike Cullen, MET Office, Exeter, UK; Melina Freitag, University of Bath, UK; Stefan Kindermann, Johann Kepler University Linz, Austria; Robert Scheichl, University of Bath, UK.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Acheter D'occasion

état :  Très bon
Zustand: Sehr gut | Seiten: 216...
Afficher cet article
EUR 42,10

Autre devise

EUR 5,90 expédition depuis Allemagne vers France

Destinations, frais et délais

Acheter neuf

Afficher cet article
EUR 54,79

Autre devise

EUR 2,94 expédition depuis Etats-Unis vers France

Destinations, frais et délais

Autres éditions populaires du même titre

9783110282276: Large Scale Inverse Problems: Computational Methods and Applications in the Earth Sciences

Edition présentée

ISBN 10 :  3110282275 ISBN 13 :  9783110282276
Editeur : Walter de Gruyter & Co, 2013
Couverture souple

Résultats de recherche pour Large Scale Inverse Problems: Computational Methods...

Image d'archives

Unbekannt
Edité par De Gruyter, 2013
ISBN 10 : 3110282224 ISBN 13 : 9783110282221
Ancien ou d'occasion Couverture rigide

Vendeur : Buchpark, Trebbin, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : Sehr gut. Zustand: Sehr gut | Seiten: 216 | Sprache: Englisch | Produktart: Bücher. N° de réf. du vendeur 23482529/12

Contacter le vendeur

Acheter D'occasion

EUR 42,10
Autre devise
Frais de port : EUR 5,90
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Cullen, Mike , Freitag, Melina Et. Al.
Edité par De Gruyter, 2013
ISBN 10 : 3110282224 ISBN 13 : 9783110282221
Neuf Couverture rigide

Vendeur : Basi6 International, Irving, TX, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. N° de réf. du vendeur ABEJUNE24-261910

Contacter le vendeur

Acheter neuf

EUR 54,79
Autre devise
Frais de port : EUR 2,94
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image d'archives

ISBN 10 : 3110282224 ISBN 13 : 9783110282221
Neuf Couverture rigide

Vendeur : Books Puddle, New York, NY, Etats-Unis

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. pp. xx + 250. N° de réf. du vendeur 2650501323

Contacter le vendeur

Acheter neuf

EUR 63,98
Autre devise
Frais de port : EUR 7,89
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

ISBN 10 : 3110282224 ISBN 13 : 9783110282221
Neuf Couverture rigide

Vendeur : Majestic Books, Hounslow, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. pp. xx + 250. N° de réf. du vendeur 58009876

Contacter le vendeur

Acheter neuf

EUR 63,30
Autre devise
Frais de port : EUR 10,50
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Scheichl Robert Kindermann Stefan Freitag Melina A. Cullen Mike
ISBN 10 : 3110282224 ISBN 13 : 9783110282221
Neuf Couverture rigide

Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. pp. xx + 250. N° de réf. du vendeur 1850501313

Contacter le vendeur

Acheter neuf

EUR 66,01
Autre devise
Frais de port : EUR 7,95
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Cullen, Mike|Freitag, Melina A|Kindermann, Stefan|Scheichl, Robert
Edité par De Gruyter, 2013
ISBN 10 : 3110282224 ISBN 13 : 9783110282221
Neuf Couverture rigide
impression à la demande

Vendeur : moluna, Greven, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Gebunden. Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Mike Cullen, MET Offi. N° de réf. du vendeur 4456677

Contacter le vendeur

Acheter neuf

EUR 98,22
Autre devise
Frais de port : EUR 9,70
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Mike Cullen
Edité par De Gruyter, 2013
ISBN 10 : 3110282224 ISBN 13 : 9783110282221
Neuf Couverture rigide

Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This book is the second volume of a three volume series recording the 'Radon Special Semester 2011 on Multiscale Simulation & Analysis in Energy and the Environment' that took placein Linz, Austria, October 3-7, 2011. This volume addresses the common ground in the mathematical and computational procedures required for large-scale inverse problems and data assimilation in forefront applications. The solution of inverse problems is fundamental to a wide variety of applications such as weather forecasting, medical tomography, and oil exploration. Regularisation techniques are needed to ensure solutions of sufficient quality to be useful, and soundly theoretically based. This book addresses the common techniques required for all the applications, and is thus truly interdisciplinary. This collection of survey articles focusses on the large inverse problems commonly arising in simulation and forecasting in the earth sciences. For example, operational weather forecasting models have between 107 and 108 degrees of freedom. Even so, these degrees of freedom represent grossly space-time averaged properties of the atmosphere. Accurate forecasts require accurate initial conditions. With recent developments in satellite data, there are between 106 and 107 observations each day. However, while these also represent space-time averaged properties, the averaging implicit in the measurements is quite different from that used in the models. In atmosphere and ocean applications, there is a physically-based model available which can be used to regularise the problem. We assume that there is a set of observations with known error characteristics available over a period of time. The basic deterministic technique is to fit a model trajectory to the observations over a period of time to within the observation error. Since the model is not perfect the model trajectory has to be corrected, which defines the data assimilation problem. The stochastic view can be expressed by using an ensemble of model trajectories, and calculating corrections to both the mean value and the spread which allow the observations to be fitted by each ensemble member. In other areas of earth science, only the structure of the model formulation itself is known and the aim is to use the past observation history to determine the unknown model parameters. The book records the achievements of Workshop 2 'Large-Scale Inverse Problems and Applications in the Earth Sciences'. It involves experts in the theory of inverse problems together with experts working on both theoretical and practical aspects of the techniques by which large inverse problems arise in the earth sciences. N° de réf. du vendeur 9783110282221

Contacter le vendeur

Acheter neuf

EUR 109,95
Autre devise
Frais de port : EUR 10,99
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Mike Cullen
ISBN 10 : 3110282224 ISBN 13 : 9783110282221
Neuf Couverture rigide
impression à la demande

Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. This item is printed on demand - Print on Demand Titel. Neuware -This book is the second volume of a three volume series recording the 'Radon Special Semester 2011 on Multiscale Simulation & Analysis in Energy and the Environment' that took placein Linz, Austria, October 3-7, 2011. This volume addresses the common ground in the mathematical and computational procedures required for large-scale inverse problems and data assimilation in forefront applications.The solution of inverse problems is fundamental to a wide variety of applications such as weather forecasting, medical tomography, and oil exploration. Regularisation techniques are needed to ensure solutions of sufficient quality to be useful, and soundly theoretically based. This book addresses the common techniques required for all the applications, and is thus truly interdisciplinary.This collection of survey articles focusses on the large inverse problems commonly arising in simulation and forecasting in the earth sciences. For example, operational weather forecasting models have between 107 and 108 degrees of freedom. Even so, these degrees of freedom represent grossly space-time averaged properties of the atmosphere. Accurate forecasts require accurate initial conditions. With recent developments in satellite data, there are between 106 and 107 observations each day. However, while these also represent space-time averaged properties, the averaging implicit in the measurements is quite different from that used in the models. In atmosphere and ocean applications, there is a physically-based model available which can be used to regularise the problem. We assume that there is a set of observations with known error characteristics available over a period of time. The basic deterministic technique is to fit a model trajectory to the observations over a period of time to within the observation error. Since the model is not perfect the model trajectory has to be corrected, which defines the data assimilation problem. The stochastic view can be expressed by using an ensemble of model trajectories, and calculating corrections to both the mean value and the spread which allow the observations to be fitted by each ensemble member. In other areas of earth science, only the structure of the model formulation itself is known and the aim is to use the past observation history to determine the unknown model parameters.The book records the achievements of Workshop 2 'Large-Scale Inverse Problems and Applications in the Earth Sciences'. It involves experts in the theory of inverse problems together with experts working on both theoretical and practical aspects of the techniques by which large inverse problems arise in the earth sciences.Walter de Gruyter, Genthiner Straße 13, 10785 Berlin 216 pp. Englisch. N° de réf. du vendeur 9783110282221

Contacter le vendeur

Acheter neuf

EUR 109,95
Autre devise
Frais de port : EUR 15
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Mike Cullen
ISBN 10 : 3110282224 ISBN 13 : 9783110282221
Neuf Couverture rigide
impression à la demande

Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book is the second volume of a three volume series recording the 'Radon Special Semester 2011 on Multiscale Simulation & Analysis in Energy and the Environment' that took placein Linz, Austria, October 3-7, 2011. This volume addresses the common ground in the mathematical and computational procedures required for large-scale inverse problems and data assimilation in forefront applications. The solution of inverse problems is fundamental to a wide variety of applications such as weather forecasting, medical tomography, and oil exploration. Regularisation techniques are needed to ensure solutions of sufficient quality to be useful, and soundly theoretically based. This book addresses the common techniques required for all the applications, and is thus truly interdisciplinary. This collection of survey articles focusses on the large inverse problems commonly arising in simulation and forecasting in the earth sciences. For example, operational weather forecasting models have between 107 and 108 degrees of freedom. Even so, these degrees of freedom represent grossly space-time averaged properties of the atmosphere. Accurate forecasts require accurate initial conditions. With recent developments in satellite data, there are between 106 and 107 observations each day. However, while these also represent space-time averaged properties, the averaging implicit in the measurements is quite different from that used in the models. In atmosphere and ocean applications, there is a physically-based model available which can be used to regularise the problem. We assume that there is a set of observations with known error characteristics available over a period of time. The basic deterministic technique is to fit a model trajectory to the observations over a period of time to within the observation error. Since the model is not perfect the model trajectory has to be corrected, which defines the data assimilation problem. The stochastic view can be expressed by using an ensemble of model trajectories, and calculating corrections to both the mean value and the spread which allow the observations to be fitted by each ensemble member. In other areas of earth science, only the structure of the model formulation itself is known and the aim is to use the past observation history to determine the unknown model parameters. The book records the achievements of Workshop 2 'Large-Scale Inverse Problems and Applications in the Earth Sciences'. It involves experts in the theory of inverse problems together with experts working on both theoretical and practical aspects of the techniques by which large inverse problems arise in the earth sciences. 216 pp. Englisch. N° de réf. du vendeur 9783110282221

Contacter le vendeur

Acheter neuf

EUR 129,95
Autre devise
Frais de port : EUR 11
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image d'archives

Edité par De Gruyter, 2013
ISBN 10 : 3110282224 ISBN 13 : 9783110282221
Ancien ou d'occasion Couverture rigide

Vendeur : Mispah books, Redhill, SURRE, Royaume-Uni

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Hardcover. Etat : Like New. Like New. book. N° de réf. du vendeur ERICA75831102822245

Contacter le vendeur

Acheter D'occasion

EUR 114,89
Autre devise
Frais de port : EUR 29,66
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier