Finite Difference Methods for Nonlinear Evolution Equations - Couverture rigide

Sun, Zhi-Zhong; Zhang, Qifeng; Gao, Guang-hua

 
9783110795851: Finite Difference Methods for Nonlinear Evolution Equations

Synopsis

Nonlinear evolution equations are widely used to describe nonlinear phenomena in natural and social sciences. However, they are usually quite difficult to solve in most instances. This book introduces the finite difference methods for solving nonlinear evolution equations. The main numerical analysis tool is the energy method. This book covers the difference methods for the initial-boundary value problems of twelve nonlinear partial differential equations. They are Fisher equation, Burgers' equation, regularized long-wave equation, Korteweg-de Vries equation, Camassa-Holm equation, Schrödinger equation, Kuramoto-Tsuzuki equation, Zakharov equation, Ginzburg-Landau equation, Cahn-Hilliard equation, epitaxial growth model and phase field crystal model. This book is a monograph for the graduate students and science researchers majoring in computational mathematics and applied mathematics. It will be also useful to all researchers in related disciplines.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

À propos de l?auteur

Zhi-Zhong Sun, Southeast University; Qifeng Zhang, Zhejiang Sci-Tech University; Guang-hua Gao, Nanjing University, China.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.