There seems to be no doubt that geometry originates from such practical activ- ities as weather observation and terrain survey. But there are different manners, methods, and ways to raise the various experiences to the level of theory so that they finally constitute a science. F. Engels said, "The objective of mathematics is the study of space forms and quantitative relations of the real world. " Dur- ing the time of the ancient Greeks, there were two different methods dealing with geometry: one, represented by the Euclid's "Elements," purely pursued the logical relations among geometric entities, excluding completely the quantita- tive relations, as to establish the axiom system of geometry. This method has become a model of deduction methods in mathematics. The other, represented by the relevant work of Archimedes, focused on the study of quantitative re- lations of geometric objects as well as their measures such as the ratio of the circumference of a circle to its diameter and the area of a spherical surface and of a parabolic sector. Though these approaches vary in style, have their own features, and reflect different viewpoints in the development of geometry, both have made great contributions to the development of mathematics. The development of geometry in China was all along concerned with quanti- tative relations.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
EUR 9,90 expédition depuis Allemagne vers France
Destinations, frais et délaisEUR 9,70 expédition depuis Allemagne vers France
Destinations, frais et délaisVendeur : Buchpark, Trebbin, Allemagne
Etat : Gut. Zustand: Gut | Seiten: 308 | Sprache: Englisch | Produktart: Bücher. N° de réf. du vendeur 927039/203
Quantité disponible : 1 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. N° de réf. du vendeur 4488743
Quantité disponible : Plus de 20 disponibles
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : Used. pp. 310 67:B&W 6.69 x 9.61 in or 244 x 170 mm (Pinched Crown) Perfect Bound on White w/Gloss Lam. N° de réf. du vendeur 7163525
Quantité disponible : 1 disponible(s)
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - There seems to be no doubt that geometry originates from such practical activ ities as weather observation and terrain survey. But there are different manners, methods, and ways to raise the various experiences to the level of theory so that they finally constitute a science. F. Engels said, 'The objective of mathematics is the study of space forms and quantitative relations of the real world. ' Dur ing the time of the ancient Greeks, there were two different methods dealing with geometry: one, represented by the Euclid's 'Elements,' purely pursued the logical relations among geometric entities, excluding completely the quantita tive relations, as to establish the axiom system of geometry. This method has become a model of deduction methods in mathematics. The other, represented by the relevant work of Archimedes, focused on the study of quantitative re lations of geometric objects as well as their measures such as the ratio of the circumference of a circle to its diameter and the area of a spherical surface and of a parabolic sector. Though these approaches vary in style, have their own features, and reflect different viewpoints in the development of geometry, both have made great contributions to the development of mathematics. The development of geometry in China was all along concerned with quanti tative relations. N° de réf. du vendeur 9783211825068
Quantité disponible : 1 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - Print on Demand Titel. Neuware -There seems to be no doubt that geometry originates from such practical activ ities as weather observation and terrain survey. But there are different manners, methods, and ways to raise the various experiences to the level of theory so that they finally constitute a science. F. Engels said, 'The objective of mathematics is the study of space forms and quantitative relations of the real world. ' Dur ing the time of the ancient Greeks, there were two different methods dealing with geometry: one, represented by the Euclid's 'Elements,' purely pursued the logical relations among geometric entities, excluding completely the quantita tive relations, as to establish the axiom system of geometry. This method has become a model of deduction methods in mathematics. The other, represented by the relevant work of Archimedes, focused on the study of quantitative re lations of geometric objects as well as their measures such as the ratio of the circumference of a circle to its diameter and the area of a spherical surface and of a parabolic sector. Though these approaches vary in style, have their own features, and reflect different viewpoints in the development of geometry, both have made great contributions to the development of mathematics. The development of geometry in China was all along concerned with quanti tative relations.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 308 pp. Englisch. N° de réf. du vendeur 9783211825068
Quantité disponible : 1 disponible(s)
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9783211825068
Quantité disponible : Plus de 20 disponibles
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. pp. 310. N° de réf. du vendeur 261765722
Quantité disponible : 4 disponible(s)
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9783211825068_new
Quantité disponible : Plus de 20 disponibles
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. PRINT ON DEMAND pp. 310. N° de réf. du vendeur 181765712
Quantité disponible : 4 disponible(s)
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Paperback. Etat : Brand New. 1st edition. 288 pages. 9.40x6.50x0.60 inches. In Stock. N° de réf. du vendeur x-3211825061
Quantité disponible : 2 disponible(s)