The Mathematical Theory of Time-harmonic Maxwell's Equations: Expansion, Integral, and Variational Methods - Couverture rigide

Livre 70 sur 94: Applied Mathematical Sciences

Kirsch, Andreas; Hettlich, Frank

 
9783319110851: The Mathematical Theory of Time-harmonic Maxwell's Equations: Expansion, Integral, and Variational Methods

Synopsis

This book gives a concise introduction to the basic techniques needed for the theoretical analysis of the Maxwell Equations, and filters in an elegant way the essential parts, e.g., concerning the various function spaces needed to rigorously investigate the boundary integral equations and variational equations. The book arose from lectures taught by the authors over many years and can be helpful in designing graduate courses for mathematically orientated students on electromagnetic wave propagation problems. The students should have some knowledge on vector analysis (curves, surfaces, divergence theorem) and functional analysis (normed spaces, Hilbert spaces, linear and bounded operators, dual space). Written in an accessible manner, topics are first approached with simpler scale Helmholtz Equations before turning to Maxwell Equations. There are examples and exercises throughout the book. It will be useful for graduate students and researchers in applied mathematics and engineers working in the theoretical approach to electromagnetic wave propagation.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

À propos de l?auteur

Andreas Kirsch and Frank Hettlich are Professors of Mathematics at Karlsruher Institut für Technologie (KIT).

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Autres éditions populaires du même titre

9783319379180: The Mathematical Theory of Time-Harmonic Maxwell's Equations: Expansion-, Integral-, and Variational Methods

Edition présentée

ISBN 10 :  3319379186 ISBN 13 :  9783319379180
Editeur : Springer, 2016
Couverture souple