This book introduces numerous algorithmic hybridizations between both worlds that show how machine learning can improve and support evolution strategies. The set of methods comprises covariance matrix estimation, meta-modeling of fitness and constraint functions, dimensionality reduction for search and visualization of high-dimensional optimization processes, and clustering-based niching. After giving an introduction to evolution strategies and machine learning, the book builds the bridge between both worlds with an algorithmic and experimental perspective. Experiments mostly employ a (1]1)-ES and are implemented in Python using the machine learning library scikit-learn. The examples are conducted on typical benchmark problems illustrating algorithmic concepts and their experimental behavior. The book closes with a discussion of related lines of research.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
EUR 30 expédition depuis Allemagne vers Etats-Unis
Destinations, frais et délaisEUR 3,42 expédition vers Etats-Unis
Destinations, frais et délaisVendeur : Universitätsbuchhandlung Herta Hold GmbH, Berlin, Allemagne
23.5 cm x 15.5 cm, 0 g. VII, 124 p. Hardcover. Versand aus Deutschland / We dispatch from Germany via Air Mail. Einband bestoßen, daher Mängelexemplar gestempelt, sonst sehr guter Zustand. Imperfect copy due to slightly bumped cover, apart from this in very good condition. Stamped. Studies in Big Data ; 20. Sprache: Englisch. N° de réf. du vendeur 41532HB
Quantité disponible : 3 disponible(s)
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLIING23Mar3113020093548
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 26104771-n
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 26104771
Quantité disponible : Plus de 20 disponibles
Vendeur : Grand Eagle Retail, Bensenville, IL, Etats-Unis
Hardcover. Etat : new. Hardcover. This bookintroduces numerous algorithmic hybridizations between both worlds that showhow machine learning can improve and support evolution strategies. The set ofmethods comprises covariance matrix estimation, meta-modeling of fitness andconstraint functions, dimensionality reduction for search and visualization ofhigh-dimensional optimization processes, and clustering-based niching. Aftergiving an introduction to evolution strategies and machine learning, the bookbuilds the bridge between both worlds with an algorithmic and experimentalperspective. Experiments mostly employ a (1+1)-ES and are implemented in Pythonusing the machine learning library scikit-learn. The examples are conducted ontypical benchmark problems illustrating algorithmic concepts and theirexperimental behavior. The book closes with a discussion of related lines ofresearch. This bookintroduces numerous algorithmic hybridizations between both worlds that showhow machine learning can improve and support evolution strategies. Aftergiving an introduction to evolution strategies and machine learning, the bookbuilds the bridge between both worlds with an algorithmic and experimentalperspective. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9783319333816
Quantité disponible : 1 disponible(s)
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9783319333816_new
Quantité disponible : Plus de 20 disponibles
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Buch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This bookintroduces numerous algorithmic hybridizations between both worlds that showhow machine learning can improve and support evolution strategies. The set ofmethods comprises covariance matrix estimation, meta-modeling of fitness andconstraint functions, dimensionality reduction for search and visualization ofhigh-dimensional optimization processes, and clustering-based niching. Aftergiving an introduction to evolution strategies and machine learning, the bookbuilds the bridge between both worlds with an algorithmic and experimentalperspective. Experiments mostly employ a (1+1)-ES and are implemented in Pythonusing the machine learning library scikit-learn. The examples are conducted ontypical benchmark problems illustrating algorithmic concepts and theirexperimental behavior. The book closes with a discussion of related lines ofresearch. 136 pp. Englisch. N° de réf. du vendeur 9783319333816
Quantité disponible : 2 disponible(s)
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : New. N° de réf. du vendeur 26104771-n
Quantité disponible : Plus de 20 disponibles
Vendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. State of the art presentation of Machine Learning in Evolution StrategiesCondensed presentationShort introduction and recent researchThis bookintroduces numerous algorithmic hybridizations between both worlds that showhow machine. N° de réf. du vendeur 119052186
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 26104771
Quantité disponible : Plus de 20 disponibles