This book thoroughly discusses computationally efficient (suboptimal) Model Predictive Control (MPC) techniques based on neural models. The subjects treated include:
· A few types of suboptimal MPC algorithms in which a linear approximation of the model or of the predicted trajectory is successively calculated on-line and used for prediction.
· Implementation details of the MPC algorithms for feed forward perceptron neural models, neural Hammerstein models, neural Wiener models and state-space neural models.
· The MPC algorithms based on neural multi-models (inspired by the idea of predictive control).
· The MPC algorithms with neural approximation with no on-line linearization.
· The MPC algorithms with guaranteed stability and robustness.
· Cooperation between the MPC algorithms and set-point optimization.
Thanks to linearization (or neural approximation), the presented suboptimal algorithms do not require demanding on-line nonlinear optimization. The presented simulation results demonstrate high accuracy and computational efficiency of the algorithms. For a few representative nonlinear benchmark processes, such as chemical reactors and a distillation column, for which the classical MPC algorithms based on linear models do not work properly, the trajectories obtained in the suboptimal MPC algorithms are very similar to those given by the ``ideal'' MPC algorithm with on-line nonlinear optimization repeated at each sampling instant. At the same time, the suboptimal MPC algorithms are significantly less computationally demanding.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
EUR 28,97 expédition depuis Royaume-Uni vers France
Destinations, frais et délaisEUR 9,70 expédition depuis Allemagne vers France
Destinations, frais et délaisVendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Presents recent research in Computationally Efficient Model Predictive Control AlgorithmsFocuses on a Neural Network Approach for Model Predictive ControlWritten by an expert in the fieldThis book thoroughly discusses computation. N° de réf. du vendeur 385703816
Quantité disponible : Plus de 20 disponibles
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This book thoroughly discusses computationally efficient (suboptimal) Model Predictive Control (MPC) techniques based on neural models. The subjects treated include: A few types of suboptimal MPC algorithms in which a linear approximation of the model or of the predicted trajectory is successively calculated on-line and used for prediction. Implementation details of the MPC algorithms for feed forward perceptron neural models, neural Hammerstein models, neural Wiener models and state-space neural models. The MPC algorithms based on neural multi-models (inspired by the idea of predictive control). The MPC algorithms with neural approximation with no on-line linearization. The MPC algorithms with guaranteed stability and robustness. Cooperation between the MPC algorithms and set-point optimization.Thanks to linearization (or neural approximation), the presented suboptimal algorithms do not require demanding on-line nonlinear optimization. The presented simulation results demonstrate high accuracy and computational efficiency of the algorithms. For a few representative nonlinear benchmark processes, such as chemical reactors and a distillation column, for which the classical MPC algorithms based on linear models do not work properly, the trajectories obtained in the suboptimal MPC algorithms are very similar to those given by the ``ideal'' MPC algorithm with on-line nonlinear optimization repeated at each sampling instant. At the same time, the suboptimal MPC algorithms are significantly less computationally demanding. N° de réf. du vendeur 9783319350219
Quantité disponible : 1 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book thoroughly discusses computationally efficient (suboptimal) Model Predictive Control (MPC) techniques based on neural models. The subjects treated include: A few types of suboptimal MPC algorithms in which a linear approximation of the model or of the predicted trajectory is successively calculated on-line and used for prediction. Implementation details of the MPC algorithms for feed forward perceptron neural models, neural Hammerstein models, neural Wiener models and state-space neural models. The MPC algorithms based on neural multi-models (inspired by the idea of predictive control). The MPC algorithms with neural approximation with no on-line linearization. The MPC algorithms with guaranteed stability and robustness. Cooperation between the MPC algorithms and set-point optimization.Thanks to linearization (or neural approximation), the presented suboptimal algorithms do not require demanding on-line nonlinear optimization. The presented simulation results demonstrate high accuracy and computational efficiency of the algorithms. For a few representative nonlinear benchmark processes, such as chemical reactors and a distillation column, for which the classical MPC algorithms based on linear models do not work properly, the trajectories obtained in the suboptimal MPC algorithms are very similar to those given by the ``ideal'' MPC algorithm with on-line nonlinear optimization repeated at each sampling instant. At the same time, the suboptimal MPC algorithms are significantly less computationally demanding. 340 pp. Englisch. N° de réf. du vendeur 9783319350219
Quantité disponible : 2 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. Neuware -This book thoroughly discusses computationally efficient (suboptimal) Model Predictive Control (MPC) techniques based on neural models. The subjects treated include: A few types of suboptimal MPC algorithms in which a linear approximation of the model or of the predicted trajectory is successively calculated on-line and used for prediction. Implementation details of the MPC algorithms for feed forward perceptron neural models, neural Hammerstein models, neural Wiener models and state-space neural models. The MPC algorithms based on neural multi-models (inspired by the idea of predictive control). The MPC algorithms with neural approximation with no on-line linearization. The MPC algorithms with guaranteed stability and robustness. Cooperation between the MPC algorithms and set-point optimization.Thanks to linearization (or neural approximation), the presented suboptimal algorithms do not require demanding on-line nonlinear optimization. The presented simulation results demonstrate high accuracy and computational efficiency of the algorithms. For a few representative nonlinear benchmark processes, such as chemical reactors and a distillation column, for which the classical MPC algorithms based on linear models do not work properly, the trajectories obtained in the suboptimal MPC algorithms are very similar to those given by the ``ideal'' MPC algorithm with on-line nonlinear optimization repeated at each sampling instant. At the same time, the suboptimal MPC algorithms are significantly less computationally demanding.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 340 pp. Englisch. N° de réf. du vendeur 9783319350219
Quantité disponible : 2 disponible(s)
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Paperback. Etat : Brand New. reprint edition. 340 pages. 9.25x6.10x0.77 inches. In Stock. N° de réf. du vendeur 3319350218
Quantité disponible : 1 disponible(s)
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. pp. 340. N° de réf. du vendeur 26378214940
Quantité disponible : 4 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. Print on Demand pp. 340. N° de réf. du vendeur 385656259
Quantité disponible : 4 disponible(s)
Vendeur : Mispah books, Redhill, SURRE, Royaume-Uni
Paperback. Etat : Like New. Like New. book. N° de réf. du vendeur ERICA80033193502186
Quantité disponible : 1 disponible(s)
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. PRINT ON DEMAND pp. 340. N° de réf. du vendeur 18378214934
Quantité disponible : 4 disponible(s)