This book is a survey and analysis of how deep learning can be used to generate musical content. The authors offer a comprehensive presentation of the foundations of deep learning techniques for music generation. They also develop a conceptual framework used to classify and analyze various types of architecture, encoding models, generation strategies, and ways to control the generation. The five dimensions of this framework are: objective (the kind of musical content to be generated, e.g., melody, accompaniment); representation (the musical elements to be considered and how to encode them, e.g., chord, silence, piano roll, one-hot encoding); architecture (the structure organizing neurons, their connexions, and the flow of their activations, e.g., feedforward, recurrent, variational autoencoder); challenge (the desired properties and issues, e.g., variability, incrementality, adaptability); and strategy (the way to model and control the process of generation, e.g., single-step feedforward, iterative feedforward, decoder feedforward, sampling). To illustrate the possible design decisions and to allow comparison and correlation analysis they analyze and classify more than 40 systems, and they discuss important open challenges such as interactivity, originality, and structure.
The authors have extensive knowledge and experience in all related research, technical, performance, and business aspects. The book is suitable for students, practitioners, and researchers in the artificial intelligence, machine learning, and music creation domains. The reader does not require any prior knowledge about artificial neural networks, deep learning, or computer music. The text is fully supported with a comprehensive table of acronyms, bibliography, glossary, and index, and supplementary material is available from the authors' website.Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
EUR 2,32 expédition vers Etats-Unis
Destinations, frais et délaisEUR 14,26 expédition depuis Royaume-Uni vers Etats-Unis
Destinations, frais et délaisVendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 30338983
Quantité disponible : Plus de 20 disponibles
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9783319701622_new
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 30338983-n
Quantité disponible : Plus de 20 disponibles
Vendeur : Corner of a Foreign Field, Tokyo, TOKYO, Japon
Hardcover. Etat : Very Good. No Jacket. 1st Edition. 2020.Hardcover.Very good condition.284 pages.Ships from Japan.Usually ships in 1-2 working days. N° de réf. du vendeur 34327
Quantité disponible : 1 disponible(s)
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : New. N° de réf. du vendeur 30338983-n
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 30338983
Quantité disponible : Plus de 20 disponibles
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLIING23Mar3113020103644
Quantité disponible : Plus de 20 disponibles
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9783319701622
Quantité disponible : Plus de 20 disponibles
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Buch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This bookis a survey and analysis of how deep learning can be used to generate musicalcontent. The authors offer a comprehensive presentation of the foundations ofdeep learningtechniques for music generation. They also develop a conceptualframework used to classify and analyze various types of architecture, encodingmodels, generation strategies, and ways tocontrol the generation. The five dimensionsof this framework are: objective (the kind of musical content to be generated, e.g.,melody, accompaniment); representation (the musicalelements to be considered andhow to encode them, e.g., chord, silence, piano roll, one-hot encoding);architecture (the structure organizing neurons, their connexions, and the flowof theiractivations, e.g., feedforward, recurrent, variational autoencoder);challenge (the desired properties and issues, e.g., variability,incrementality, adaptability); and strategy (the way to modeland control theprocess of generation, e.g., single-step feedforward, iterative feedforward,decoder feedforward, sampling). To illustrate the possible design decisions andto allowcomparison and correlation analysis they analyze and classify morethan 40 systems, and they discuss important open challenges such as interactivity,originality, and structure. The authorshave extensive knowledge and experience in all related research, technical,performance, and business aspects. The book is suitable for students,practitioners, andresearchersin the artificial intelligence, machine learning, and music creation domains.The reader does not require any prior knowledge about artificial neuralnetworks, deep learning, orcomputer music. The text is fully supported with acomprehensive table of acronyms, bibliography, glossary, and index, andsupplementary material is available from the authors' website. 312 pp. Englisch. N° de réf. du vendeur 9783319701622
Quantité disponible : 2 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Authors analysis based on five dimensions: objective, representation, architecture, challenge, and strategyImportant application of deep learning, for AI researchers and composersResearch was conducted within the EU Flow Machines project. N° de réf. du vendeur 174376061
Quantité disponible : Plus de 20 disponibles